Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Haematologica ; 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919085

RESUMO

Multiple myeloma is a prevalent and incurable disease, despite the development of new and effective drugs. The recent development of chimeric antigen receptor (CAR)-T cell therapy has shown impressive results in the treatment of patients with relapsed or refractory hematological B cell malignancies. In the recent years, B-cell maturation antigen (BCMA) has appeared as a promising antigen to target using a variety of immuno-therapy treatments including CART cells, for MM patients. To this end, we generated clinical-grade murine CART cells directed against BCMA, named ARI2m cells. Having demonstrated its efficacy, and in an at-tempt to avoid the immune rejection of CART cells by the patient, the single chain variable fragment was humanized, creating ARI2h cells. ARI2h cells demonstrated comparable in vitro and in vivo efficacy to ARI2m cells, and superiority in cases of high tumor burden disease. In terms of inflammatory response, ARI2h cells showed a lower TNFα production and lower in vivo toxicity profile. Large-scale expansion of both ARI2m and ARI2h cells was efficiently conducted following Good Manufacturing Practice guidelines, obtaining the target CART cell dose required for treatment of multiple myeloma patients. Moreover, we demonstrate that soluble BCMA and BCMA released in vesicles impacts on CAR-BCMA activity. In sum-mary, this study sets the bases for the implementation of a clinical trial (EudraCT code: 2019-001472-11) to study the efficacy of ARI2h cell treatment for multiple myeloma patients.

2.
Genes (Basel) ; 11(1)2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936647

RESUMO

The cell-of-origin of NPM1- and FLT3-mutated acute myeloid leukemia (AML) is still a matter of debate. Here, we combined in vitro clonogenic assays with targeted sequencing to gain further insights into the cell-of-origin of NPM1 and FLT3-ITD-mutated AML in diagnostic bone marrow (BM) from nine NPM1+/FLT3-ITD (+/-) AMLs. We reasoned that individually plucked colony forming units (CFUs) are clonal and reflect the progeny of a single stem/progenitor cell. NPM1 and FLT3-ITD mutations seen in the diagnostic blasts were found in only 2/95 and 1/57 individually plucked CFUs, suggesting that BM clonogenic myeloid progenitors in NPM1-mutated and NPM1/FLT3-ITD-mutated AML patients do not harbor such molecular lesions. This supports previous studies on NPM1 mutations as secondary mutations in AML, likely acquired in an expanded pool of committed myeloid progenitors, perhaps CD34-, in line with the CD34-/low phenotype of NPM1-mutated AMLs. This study has important implications on the cell-of-origin of NPM1+ AML, and reinforces that therapeutic targeting of either NPM1 or FLT3-ITD mutations might only have a transient clinical benefit in debulking the leukemia, but is unlikely to be curative since will not target the AML-initiating/preleukemic cells. The absence of NPM1 and FLT3-ITD mutations in normal clonogenic myeloid progenitors is in line with their absence in clonal hematopoiesis of indeterminate potential.

3.
Stem Cell Reports ; 13(3): 515-529, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31402335

RESUMO

In vertebrates, GATA2 is a master regulator of hematopoiesis and is expressed throughout embryo development and in adult life. Although the essential role of GATA2 in mouse hematopoiesis is well established, its involvement during early human hematopoietic development is not clear. By combining time-controlled overexpression of GATA2 with genetic knockout experiments, we found that GATA2, at the mesoderm specification stage, promotes the generation of hemogenic endothelial progenitors and their further differentiation to hematopoietic progenitor cells, and negatively regulates cardiac differentiation. Surprisingly, genome-wide transcriptional and chromatin immunoprecipitation analysis showed that GATA2 bound to regulatory regions, and repressed the expression of cardiac development-related genes. Moreover, genes important for hematopoietic differentiation were upregulated by GATA2 in a mostly indirect manner. Collectively, our data reveal a hitherto unrecognized role of GATA2 as a repressor of cardiac fates, and highlight the importance of coordinating the specification and repression of alternative cell fates.

4.
Blood ; 134(13): 1059-1071, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31383639

RESUMO

Human lymphopoiesis is a dynamic lifelong process that starts in utero 6 weeks postconception. Although fetal B-lymphopoiesis remains poorly defined, it is key to understanding leukemia initiation in early life. Here, we provide a comprehensive analysis of the human fetal B-cell developmental hierarchy. We report the presence in fetal tissues of 2 distinct CD19+ B-progenitors, an adult-type CD10+ve ProB-progenitor and a new CD10-ve PreProB-progenitor, and describe their molecular and functional characteristics. PreProB-progenitors and ProB-progenitors appear early in the first trimester in embryonic liver, followed by a sustained second wave of B-progenitor development in fetal bone marrow (BM), where together they form >40% of the total hematopoietic stem cell/progenitor pool. Almost one-third of fetal B-progenitors are CD10-ve PreProB-progenitors, whereas, by contrast, PreProB-progenitors are almost undetectable (0.53% ± 0.24%) in adult BM. Single-cell transcriptomics and functional assays place fetal PreProB-progenitors upstream of ProB-progenitors, identifying them as the first B-lymphoid-restricted progenitor in human fetal life. Although fetal BM PreProB-progenitors and ProB-progenitors both give rise solely to B-lineage cells, they are transcriptionally distinct. As with their fetal counterparts, adult BM PreProB-progenitors give rise only to B-lineage cells in vitro and express the expected B-lineage gene expression program. However, fetal PreProB-progenitors display a distinct, ontogeny-related gene expression pattern that is not seen in adult PreProB-progenitors, and they share transcriptomic signatures with CD10-ve B-progenitor infant acute lymphoblastic leukemia blast cells. These data identify PreProB-progenitors as the earliest B-lymphoid-restricted progenitor in human fetal life and suggest that this fetal-restricted committed B-progenitor might provide a permissive cellular context for prenatal B-progenitor leukemia initiation.


Assuntos
Feto/citologia , Linfopoese , Neprilisina/análise , Células Precursoras de Linfócitos B/citologia , Adulto , Medula Óssea/embriologia , Medula Óssea/metabolismo , Células Cultivadas , Feto/embriologia , Feto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Fígado/embriologia , Fígado/metabolismo , Neprilisina/genética , Células Precursoras de Linfócitos B/metabolismo , Transcriptoma
5.
Blood ; 134(11): 900-905, 2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31221673
7.
Nucleic Acids Res ; 47(10): 5016-5037, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30923829

RESUMO

Histone H4 acetylation at Lysine 16 (H4K16ac) is a key epigenetic mark involved in gene regulation, DNA repair and chromatin remodeling, and though it is known to be essential for embryonic development, its role during adult life is still poorly understood. Here we show that this lysine is massively hyperacetylated in peripheral neutrophils. Genome-wide mapping of H4K16ac in terminally differentiated blood cells, along with functional experiments, supported a role for this histone post-translational modification in the regulation of cell differentiation and apoptosis in the hematopoietic system. Furthermore, in neutrophils, H4K16ac was enriched at specific DNA repeats. These DNA regions presented an accessible chromatin conformation and were associated with the cleavage sites that generate the 50 kb DNA fragments during the first stages of programmed cell death. Our results thus suggest that H4K16ac plays a dual role in myeloid cells as it not only regulates differentiation and apoptosis, but it also exhibits a non-canonical structural role in poising chromatin for cleavage at an early stage of neutrophil cell death.


Assuntos
Apoptose , Diferenciação Celular , Cromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Células Mieloides/metabolismo , Acetilação , Animais , Células Cultivadas , Cromatina/genética , Epigênese Genética , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/citologia , Processamento de Proteína Pós-Traducional , Transcrição Genética
8.
Blood ; 133(21): 2291-2304, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-30796021

RESUMO

Relapsed/refractory T-cell acute lymphoblastic leukemia (T-ALL) has a dismal outcome, and no effective targeted immunotherapies for T-ALL exist. The extension of chimeric antigen receptor (CAR) T cells (CARTs) to T-ALL remains challenging because the shared expression of target antigens between CARTs and T-ALL blasts leads to CART fratricide. CD1a is exclusively expressed in cortical T-ALL (coT-ALL), a major subset of T-ALL, and retained at relapse. This article reports that the expression of CD1a is mainly restricted to developing cortical thymocytes, and neither CD34+ progenitors nor T cells express CD1a during ontogeny, confining the risk of on-target/off-tumor toxicity. We thus developed and preclinically validated a CD1a-specific CAR with robust and specific cytotoxicity in vitro and antileukemic activity in vivo in xenograft models of coT-ALL, using both cell lines and coT-ALL patient-derived primary blasts. CD1a-CARTs are fratricide resistant, persist long term in vivo (retaining antileukemic activity in re-challenge experiments), and respond to viral antigens. Our data support the therapeutic and safe use of fratricide-resistant CD1a-CARTs for relapsed/refractory coT-ALL.


Assuntos
Antígenos CD1/imunologia , Resistencia a Medicamentos Antineoplásicos/imunologia , Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores de Antígenos Quiméricos/imunologia , Animais , Humanos , Células Jurkat , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Haematologica ; 104(6): 1176-1188, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30679323

RESUMO

B-cell acute lymphoblastic leukemia is the commonest childhood cancer. In infants, B-cell acute lymphoblastic leukemia remains fatal, especially in patients with t(4;11), present in ~80% of cases. The pathogenesis of t(4;11)/KMT2A-AFF1+ (MLL-AF4+) infant B-cell acute lymphoblastic leukemia remains difficult to model, and the pathogenic contribution in cancer of the reciprocal fusions resulting from derivative translocated-chromosomes remains obscure. Here, "multi-layered" genome-wide analyses and validation were performed on a total of 124 de novo cases of infant B-cell acute lymphoblastic leukemia uniformly diagnosed and treated according to the Interfant 99/06 protocol. These patients showed the most silent mutational landscape reported so far for any sequenced pediatric cancer. Recurrent mutations were exclusively found in K-RAS and N-RAS, were subclonal and were frequently lost at relapse, despite a larger number of non-recurrent/non-silent mutations. Unlike non-MLL-rearranged B-cell acute lymphoblastic leukemias, B-cell receptor repertoire analysis revealed minor, non-expanded B-cell clones in t(4;11)+ infant B-cell acute lymphoblastic leukemia, and RNA-sequencing showed transcriptomic similarities between t(4;11)+ infant B-cell acute lymphoblastic leukemias and the most immature human fetal liver hematopoietic stem and progenitor cells, confirming a "pre-VDJ" fetal cellular origin for both t(4;11) and RAS mut The reciprocal fusion AF4-MLL was expressed in only 45% (19/43) of the t(4;11)+ patients, and HOXA cluster genes are exclusively expressed in AF4-MLL-expressing patients. Importantly, AF4-MLL/HOXA-expressing patients had a significantly better 4-year event-free survival (62.4% vs 11.7%, P=0.001), and overall survival (73.7 vs 25.2%, P=0.016). AF4-MLL expression retained its prognostic significance when analyzed in a Cox model adjusting for risk stratification according to the Interfant-06 protocol based on age at diagnosis, white blood cell count and response to prednisone. This study has clinical implications for disease outcome and diagnostic risk-stratification of t(4;11)+ infant B-cell acute lymphoblastic leukemia.

11.
Haematologica ; 104(6): 1189-1201, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30679325

RESUMO

The t(4;11)(q21;q23) translocation is associated with high-risk infant pro-B-cell acute lymphoblastic leukemia and arises prenatally during embryonic/fetal hematopoiesis. The developmental/pathogenic contribution of the t(4;11)-resulting MLL-AF4 (MA4) and AF4-MLL (A4M) fusions remains unclear; MA4 is always expressed in patients with t(4;11)+ B-cell acute lymphoblastic leukemia, but the reciprocal fusion A4M is expressed in only half of the patients. Because prenatal leukemogenesis manifests as impaired early hematopoietic differentiation, we took advantage of well-established human embryonic stem cell-based hematopoietic differentiation models to study whether the A4M fusion cooperates with MA4 during early human hematopoietic development. Co-expression of A4M and MA4 strongly promoted the emergence of hemato-endothelial precursors, both endothelial- and hemogenic-primed. Double fusion-expressing hemato-endothelial precursors specified into significantly higher numbers of both hematopoietic and endothelial-committed cells, irrespective of the differentiation protocol used and without hijacking survival/proliferation. Functional analysis of differentially expressed genes and differentially enriched H3K79me3 genomic regions by RNA-sequencing and H3K79me3 chromatin immunoprecipitation-sequencing, respectively, confirmed a hematopoietic/endothelial cell differentiation signature in double fusion-expressing hemato-endothelial precursors. Importantly, chromatin immunoprecipitation-sequencing analysis revealed a significant enrichment of H3K79 methylated regions specifically associated with HOX-A cluster genes in double fusion-expressing differentiating hematopoietic cells. Overall, these results establish a functional and molecular cooperation between MA4 and A4M fusions during human hematopoietic development.

12.
Mol Ther Methods Clin Dev ; 12: 134-144, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30623002

RESUMO

Genetically modifying autologous T cells to express an anti-CD19 chimeric antigen receptor (CAR) has shown impressive response rates for the treatment of CD19+ B cell malignancies in several clinical trials (CTs). Making this treatment available to our patients prompted us to develop a novel CART19 based on our own anti-CD19 antibody (A3B1), followed by CD8 hinge and transmembrane region, 4-1BB- and CD3z-signaling domains. We show that A3B1 CAR T cells are highly cytotoxic and specific against CD19+ cells in vitro, inducing secretion of pro-inflammatory cytokines and CAR T cell proliferation. In vivo, A3B1 CAR T cells are able to fully control disease progression in an NOD.Cg-Prkdc scid Il2rd tm1Wjl /SzJ (NSG) xenograph B-ALL mouse model. Based on the pre-clinical data, we conclude that our CART19 is clearly functional against CD19+ cells, to a level similar to other CAR19s currently being used in the clinic. Concurrently, we describe the implementation of our CAR T cell production system, using lentiviral vector and CliniMACS Prodigy, within a medium-sized academic institution. The results of the validation phase show our system is robust and reproducible, while maintaining a low cost that is affordable for academic institutions. Our model can serve as a paradigm for similar institutions, and it may help to make CAR T cell treatment available to all patients.

13.
Leukemia ; 33(7): 1557-1569, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30635633

RESUMO

B cell acute lymphoblastic leukemia (B-ALL) is the most common childhood cancer, with cure rates of ∼80%. MLL-rearranged (MLLr) B-ALL (MLLr-B-ALL) has, however, an unfavorable prognosis with common therapy refractoriness and early relapse, and therefore new therapeutic targets are needed for relapsed/refractory MLLr-B-ALL. MLLr leukemias are characterized by the specific expression of chondroitin sulfate proteoglycan-4, also known as neuron-glial antigen-2 (NG2). NG2 was recently shown involved in leukemia invasiveness and central nervous system infiltration in MLLr-B-ALL, and correlated with lower event-free survival (EFS). We here hypothesized that blocking NG2 may synergize with established induction therapy for B-ALL based on vincristine, glucocorticoids, and L-asparaginase (VxL). Using robust patient-derived xenograft (PDX) models, we found that NG2 is crucial for MLLr-B-ALL engraftment upon intravenous (i.v.) transplantation. In vivo blockade of NG2 using either chondroitinase-ABC or an anti-NG2-specific monoclonal antibody (MoAb) resulted in a significant mobilization of MLLr-B-ALL blasts from bone marrow (BM) to peripheral blood (PB) as demonstrated by cytometric and 3D confocal imaging analysis. When combined with either NG2 antagonist, VxL treatment achieved higher rates of complete remission, and consequently higher EFS and delayed time to relapse. Mechanistically, anti-NG2 MoAb induces neither antibody-dependent cell-mediated not complement-dependent cytotoxicity. NG2 blockade rather overrides BM stroma-mediated chemoprotection through PB mobilization of MLLr-B-ALL blasts, thus becoming more accessible to chemotherapy. We provide a proof of concept for NG2 as a therapeutic target for MLLr-B-ALL.


Assuntos
Antígenos/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linfócitos B/patologia , Resistencia a Medicamentos Antineoplásicos , Rearranjo Gênico , Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/prevenção & controle , Proteoglicanas/metabolismo , Animais , Antígenos/genética , Asparaginase/administração & dosagem , Dexametasona/administração & dosagem , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteoglicanas/genética , Indução de Remissão , Taxa de Sobrevida , Vincristina/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Nat Cell Biol ; 21(3): 410, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30559458

RESUMO

We, the authors, are retracting this Article due to issues that have come to our attention regarding data availability, data description and figure assembly. Specifically, original numerical data are not available for the majority of the graphs presented in the paper. Although original data were available for most EMSA and immunoblot experiments, those corresponding to the published EMSA data of Supplementary Fig. 8a, the independent replicate immunoblots of Fig. 8b and Supplementary Fig. 1e, and the independent replicate EMSA data of Supplementary Figs 6e, 8b, 8c and 8d, are unavailable. Mistakes were detected in the presentation of Figs 3c, 4i and Supplementary Figs 6a, 8a, 8d, 9, and in some cases the ß-actin immunoblots were erroneously described in the figure legends as loading controls, rather than as sample processing controls that were run on separate gels. Although we, the authors, believe that the key findings of the paper are still valid, given the issues with data availability we have concluded that the most appropriate course of action is to retract the Article. We deeply regret these errors and apologize to the scientific community for any confusion this publication may have caused. All authors agree with the retraction.

16.
Haematologica ; 104(4): 778-788, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29954928

RESUMO

Constitutive activation of the chemokine receptor CXCR4 has been associated with tumor progression, invasion, and chemotherapy resistance in different cancer subtypes. Although the CXCR4 pathway has recently been suggested as an adverse prognostic marker in diffuse large B-cell lymphoma, its biological relevance in this disease remains underexplored. In a homogeneous set of 52 biopsies from patients, an antibody-based cytokine array showed that tissue levels of CXCL12 correlated with high microvessel density and bone marrow involvement at diagnosis, supporting a role for the CXCL12-CXCR4 axis in disease progression. We then identified the tetra-amine IQS-01.01RS as a potent inverse agonist of the receptor, preventing CXCL12-mediated chemotaxis and triggering apoptosis in a panel of 18 cell lines and primary cultures, with superior mobilizing properties in vivo than those of the standard agent. IQS-01.01RS activity was associated with downregulation of p-AKT, p-ERK1/2 and destabilization of MYC, allowing a synergistic interaction with the bromodomain and extra-terminal domain inhibitor, CPI203. In a xenotransplant model of diffuse large B-cell lymphoma, the combination of IQS-01.01RS and CPI203 decreased tumor burden through MYC and p-AKT downregulation, and enhanced the induction of apoptosis. Thus, our results point out an emerging role of CXCL12-CXCR4 in the pathogenesis of diffuse large B-cell lymphoma and support the simultaneous targeting of CXCR4 and bromodomain proteins as a promising, rationale-based strategy for the treatment of this disease.

17.
Oncoimmunology ; 7(9): e1477460, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30228947

RESUMO

Treatment for acute myeloid leukemia (AML) remains suboptimal and many patients remain refractory or relapse upon standard chemotherapy based on nucleoside analogs plus anthracyclines. The crosstalk between AML cells and the BM stroma is a major mechanism underlying therapy resistance in AML. Lenalidomide and pomalidomide, a new generation immunomodulatory drugs (IMiDs), possess pleiotropic anti-leukemic properties including potent immune-modulating effects and are commonly used in hematological malignances associated with intrinsic dysfunctional BM such as myelodysplastic syndromes and multiple myeloma. Whether IMiDs may improve the efficacy of current standard treatment in AML remains understudied. Here, we have exploited in vitro and in vivo preclinical AML models to analyze whether IMiDs potentiate the efficacy of AraC/Idarubicin-based standard AML chemotherapy by interfering with the BM stroma-mediated chemoresistance. We report that IMiDs do not exert cytotoxic effects on either non-del5q/5q- AML cells nor BM-MSCs, but they enhance the immunomodulatory properties of BM-MSCs. When combined with AraC/Idarubicin, IMiDs fail to circumvent BM stroma-mediated resistance of non-del5q/5q- AML cells in vitro and in vivo but induce robust extramedullary mobilization of AML cells. When administered as a single agent, lenalidomide specifically mobilizes non-del5q/5q- AML cells, but not healthy CD34+ cells, to peripheral blood (PB) through specific downregulation of CXCR4 in AML blasts. Global gene expression profiling supports a migratory/mobilization gene signature in lenalidomide-treated non-del5q/5q- AML blasts but not in CD34+ cells. Collectively, IMiDs mobilize non-del5q/5q- AML blasts to PB through CXCR4 downregulation, but fail to potentiate AraC/Idarubicin activity in preclinical models of non-del5q/5q- AML.

18.
Epigenomics ; 10(7): 903-923, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29620943

RESUMO

AIM: Epigenetic regulation plays an important role in cellular development and differentiation. A detailed map of the DNA methylation dynamics that occur during cell differentiation would contribute to decipher the molecular networks governing cell fate commitment. METHODS: Illumina MethylationEPIC BeadChip platform was used to describe the genome-wide DNA methylation changes observed throughout hematopoietic maturation by analyzing multiple myeloid and lymphoid hematopoietic cell types. RESULTS: We identified a plethora of DNA methylation changes that occur during human hematopoietic differentiation. We observed that T lymphocytes display substantial enhancement of de novo CpG hypermethylation as compared with other hematopoietic cell populations. T-cell-specific hypermethylated regions were strongly associated with open chromatin marks and enhancer elements, as well as binding sites of specific key transcription factors involved in hematopoietic differentiation, such as PU.1 and TAL1. CONCLUSION: These results provide novel insights into the role of DNA methylation at enhancer elements in T-cell development.


Assuntos
Metilação de DNA , Epigênese Genética , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Linfócitos T/metabolismo , Sítios de Ligação , Ilhas de CpG , Elementos Facilitadores Genéticos , Humanos , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA