Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Philos Trans A Math Phys Eng Sci ; 368(1931): 5117-35, 2010 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-20956364


The projection of robust regional climate changes over the next 50 years presents a considerable challenge for the current generation of climate models. Water cycle changes are particularly difficult to model in this area because major uncertainties exist in the representation of processes such as large-scale and convective rainfall and their feedback with surface conditions. We present climate model projections and uncertainties in water availability indicators (precipitation, run-off and drought index) for the 1961-1990 and 2021-2050 periods. Ensembles from two global climate models (GCMs) and one regional climate model (RCM) are used to examine different elements of uncertainty. Although all three ensembles capture the general distribution of observed annual precipitation across the Middle East, the RCM is consistently wetter than observations, especially over the mountainous areas. All future projections show decreasing precipitation (ensemble median between -5 and -25%) in coastal Turkey and parts of Lebanon, Syria and Israel and consistent run-off and drought index changes. The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) GCM ensemble exhibits drying across the north of the region, whereas the Met Office Hadley Centre work Quantifying Uncertainties in Model ProjectionsAtmospheric (QUMP-A) GCM and RCM ensembles show slight drying in the north and significant wetting in the south. RCM projections also show greater sensitivity (both wetter and drier) and a wider uncertainty range than QUMP-A. The nature of these uncertainties suggests that both large-scale circulation patterns, which influence region-wide drying/wetting patterns, and regional-scale processes, which affect localized water availability, are important sources of uncertainty in these projections. To reduce large uncertainties in water availability projections, it is suggested that efforts would be well placed to focus on the understanding and modelling of both large-scale processes and their teleconnections with Middle East climate and localized processes involved in orographic precipitation.

Appl Opt ; 45(22): 5701-8, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16855669


An innovative balloonborne microjoule lidar (MULID) has been developed within the framework of the HIBISCUS project to provide nighttime measurements of visible and subvisible cirrus and aerosols. MULID has been designed to be a low-cost and an ultralow consumption instrument, due to the remote possibilities of payload recovery and the necessity of a low-weight battery power supply. Ground tests have been performed at the Observatory of Haute Provence (France), and the first technical flight has been made from Trapani, Italy, on a stratospheric balloon; finally, the instrument has been scientifically deployed during the pre-HIBISCUS and HIBISCUS tropical campaigns in Bauru, Brazil, in February 2003 and February 2004, respectively. A description of the instrument is provided together with the results of the ground-based and flight tests as well as an overview and discussion of the first results.

Appl Opt ; 44(16): 3302-11, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15943267


A new algorithm to infer structural parameters such as refractive index and asphericity of cloud particles has been developed by use of in situ observations taken by a laser backscattersonde and an optical particle counter during balloon stratospheric flights. All three main particles, liquid, ice, and a no-ice solid (NAT, nitric acid trihydrate) of polar stratospheric clouds, were observed during two winter flights performed from Kiruna, Sweden. The technique is based on use of the T-matrix code developed for aspherical particles to calculate the backscattering coefficient and particle depolarizing properties on the basis of size distribution and concentration measurements. The results of the calculations are compared with observations to estimated refractive indices and particle asphericity. The method has also been used in cases when the liquid and solid phases coexist with comparable influence on the optical behavior of the cloud to estimate refractive indices. The main results prove that the index of refraction for NAT particles is in the range of 1.37-1.45 at 532 nm. Such particles would be slightly prolate spheroids. The calculated refractive indices for liquid and ice particles are 1.51-1.55 and 1.31-1.33, respectively. The results for solid particles confirm previous measurements taken in Antarctica during 1992 and obtained by a comparison of lidar and optical particle counter data.

Algoritmos , Atmosfera/análise , Monitoramento Ambiental/métodos , Lasers , Refratometria/métodos , Água/análise , Tempo (Meteorologia) , Clima Frio , Coloides/análise , Tamanho da Partícula , Espalhamento de Radiação