Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(3)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33408250

RESUMO

Genetic variants underlying life-threatening diseases, being unlikely to be transmitted to the next generation, are gradually and selectively eliminated from the population through negative selection. We study the determinants of this evolutionary process in human genes underlying monogenic diseases by comparing various negative selection scores and an integrative approach, CoNeS, at 366 loci underlying inborn errors of immunity (IEI). We find that genes underlying autosomal dominant (AD) or X-linked IEI have stronger negative selection scores than those underlying autosomal recessive (AR) IEI, whose scores are not different from those of genes not known to be disease causing. Nevertheless, genes underlying AR IEI that are lethal before reproductive maturity with complete penetrance have stronger negative selection scores than other genes underlying AR IEI. We also show that genes underlying AD IEI by loss of function have stronger negative selection scores than genes underlying AD IEI by gain of function, while genes underlying AD IEI by haploinsufficiency are under stronger negative selection than other genes underlying AD IEI. These results are replicated in 1,140 genes underlying inborn errors of neurodevelopment. Finally, we propose a supervised classifier, SCoNeS, which predicts better than state-of-the-art approaches whether a gene is more likely to underlie an AD or AR disease. The clinical outcomes of monogenic inborn errors, together with their mode and mechanisms of inheritance, determine the levels of negative selection at their corresponding loci. Integrating scores of negative selection may facilitate the prioritization of candidate genes and variants in patients suspected to carry an inborn error.

2.
J Immunol ; 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33229441

RESUMO

High-dimensional cytometry is a powerful technique for deciphering the immunopathological factors common to multiple individuals. However, rational comparisons of multiple batches of experiments performed on different occasions or at different sites are challenging because of batch effects. In this study, we describe the integration of multibatch cytometry datasets (iMUBAC), a flexible, scalable, and robust computational framework for unsupervised cell-type identification across multiple batches of high-dimensional cytometry datasets, even without technical replicates. After overlaying cells from multiple healthy controls across batches, iMUBAC learns batch-specific cell-type classification boundaries and identifies aberrant immunophenotypes in patient samples from multiple batches in a unified manner. We illustrate unbiased and streamlined immunophenotyping using both public and in-house mass cytometry and spectral flow cytometry datasets. The method is available as the R package iMUBAC (https://github.com/casanova-lab/iMUBAC).

3.
Artigo em Inglês | MEDLINE | ID: mdl-32944031

RESUMO

Interferon-stimulated gene 15 (ISG15) was the first ubiquitin-like modifier protein identified that acts by protein conjugation (ISGylation) and is thought to modulate IFN-induced inflammation. Here, we report a new patient from a non-consanguineous Argentinian family, who was followed for recurrent ulcerative skin lesions, cerebral calcifications and lung disease. Whole Exome Sequencing (WES) revealed two novel compound heterozygous variants (c.285del and c.299_312del, NM_005101.4 GRCh37(hg19), both classified as pathogenic according to ACMG criteria) in the ISG15 gene, resulting in a complete deficiency due to disruption of the second ubiquitin domain of the corresponding protein. The clinical phenotype of this patient is unique given the presence of recurrent pulmonary manifestations and the absence of mycobacterial infections, thus resulting in a phenotype distinct from that previously described in patients with biallelic loss-of-function (LOF) ISG15 variants. This case highlights the role of ISG15 as an immunomodulating factor whose LOF variants result in heterogeneous clinical presentations.

4.
J Clin Immunol ; 40(8): 1144-1155, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32920680

RESUMO

PURPOSE: Nocardiosis is a life-threatening infectious disease. We aimed at describing nocardiosis in patients with primary immunodeficiency diseases (PID). METHODS: This international retrospective cohort included patients with PID and nocardiosis diagnosed and/or published from Jan 1, 2000, to Dec 31, 2016. To identify nocardiosis cases, we analyzed PID databases from the French National Reference Center for PID (Paris, France) and the National Institute of Health (NIH, United States of America) and we performed a literature review on PubMed. RESULTS: Forty-nine cases of nocardiosis associated with PID were included: median age at diagnosis of nocardiosis was 19 (0-56) years and most cases were observed among chronic granulomatous disease (CGD) patients (87.8%). Median time from symptoms to diagnosis of Nocardia infection was 20 (2-257) days. Most frequent clinical nocardiosis presentation was pneumonia (86.7%). Twelve-month mortality rate was 4.2%, and 11.9% of patients experienced a possible recurrence of infection. Nocardiosis more frequently led to the diagnosis of PID among non-CGD patients than in CGD patients. Non-CGD patients experienced more cerebral nocardiosis and more disseminated infections, but mortality and recurrence rates were similar. Highest incidences of nocardiosis among PID cohorts were observed among CGD patients (0.0057 and 0.0044 cases/patient-year in the USA and in France, respectively), followed by IL-12p40 deficiency. CONCLUSIONS: Among 49 cases of nocardiosis associated with PID, most patients had CGD and lung involvement. Both mortality and recurrence rates were low.

6.
J Clin Invest ; 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32960813

RESUMO

Inborn errors of TLR3-dependent IFN-α/ß- and -λ-mediated immunity in the central nervous system (CNS) can underlie herpes simplex virus 1 (HSV-1) encephalitis (HSE). The respective contributions of IFN-α/ß and -λ are unknown. We report a child homozygous for a genomic deletion of the entire coding sequence and part of the 3'UTR of the last exon of IFNAR1, who died from HSE at the age of two years. An older cousin died following vaccination against measles, mumps and rubella at 12 months of age, and another 17-year-old cousin homozygous for the same variant has had other, less severe viral illnesses. The encoded IFNAR1 protein is expressed on the cell surface but is truncated and cannot interact with the tyrosine kinase TYK2. The patient's fibroblasts and EBV-B cells did not respond to IFN-α2b or IFN-ß, in terms of STAT1, STAT2 and STAT3 phosphorylation, or the genome-wide induction of IFN-stimulated genes. The patient's fibroblasts were susceptible to viruses, including HSV-1, even in the presence of exogenous IFN-α2b or IFN-ß. HSE is therefore a consequence of inherited complete IFNAR1 deficiency. This viral disease occurred in natural conditions, unlike those previously reported in other patients with IFNAR1 or IFNAR2 deficiency. This experiment of Nature indicates that IFN-α/ß are essential for anti-HSV-1 immunity in the CNS.

7.
Front Immunol ; 11: 1161, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32676075

RESUMO

Interferon-γ receptor 1 (IFNγR1) deficiency is one of the inborn errors of IFN-γ immunity underlying Mendelian Susceptibility to Mycobacterial Disease (MSMD). This molecular circuit plays a crucial role in regulating the interaction between dendritic cells (DCs) and T lymphocytes, thus affecting DCs activation, maturation, and priming of T cells involved in the immune response against intracellular pathogens. We studied a girl who developed at the age of 2.5 years a Mycobacterium avium infection characterized by disseminated necrotizing granulomatous lymphadenitis, and we compared her findings with other patients with the same genetic condition. The patient carried a heterozygous 818del4 mutation in the IFNGR1 gene responsible of autosomal dominant (AD) partial IFNγR1 deficiency. During the acute infection blood cells immunophenotyping showed a marked reduction in DCs counts, including both myeloid (mDCs) and plasmacytoid (pDCs) subsets, that reversed after successful prolonged antimicrobial therapy. Histology of her abdomen lymph node revealed a profound depletion of tissue pDCs, as compared to other age-matched granulomatous lymphadenitis of mycobacterial origin. Circulating DCs depletion was also observed in another patient with AD partial IFNγR1 deficiency during mycobacterial infection. To conclude, AD partial IFNγR1 deficiency can be associated with a transient decrease in both circulating and tissular DCs during acute mycobacterial infection, suggesting that DCs counts monitoring might constitute a useful marker of treatment response.

9.
Proc Natl Acad Sci U S A ; 117(32): 19367-19375, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32719112

RESUMO

Whole-exome sequencing (WES) has facilitated the discovery of genetic lesions underlying monogenic disorders. Incomplete penetrance and variable expressivity suggest a contribution of additional genetic lesions to clinical manifestations and outcome. Some monogenic disorders may therefore actually be digenic. However, only a few digenic disorders have been reported, all discovered by candidate gene approaches applied to at least one locus. We propose here a two-locus genome-wide test for detecting digenic inheritance in WES data. This approach uses the gene as the unit of analysis and tests all pairs of genes to detect pairwise gene × gene interactions underlying disease. It is a case-only method, which has several advantages over classic case-control tests, in particular by avoiding recruitment of controls. Our simulation studies based on real WES data identified two major sources of type I error inflation in this case-only test: linkage disequilibrium and population stratification. Both were corrected by specific procedures. Moreover, our case-only approach is more powerful than the corresponding case-control test for detecting digenic interactions in various population stratification scenarios. Finally, we confirmed the potential of our unbiased, genome-wide approach by successfully identifying a previously reported digenic lesion in patients with craniosynostosis. Our case-only test is a powerful and timely tool for detecting digenic inheritance in WES data from patients.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Herança Multifatorial , Sequenciamento Completo do Exoma/métodos , Craniossinostoses/genética , Epistasia Genética , Exoma/genética , Ligação Genética , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Modelos Genéticos
10.
Int Immunol ; 32(10): 663-671, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32603428

RESUMO

Autosomal recessive (AR) complete signal transducer and activator of transcription 1 (STAT1) deficiency is an extremely rare primary immunodeficiency that causes life-threatening mycobacterial and viral infections. Only seven patients from five unrelated families with this disorder have been so far reported. All causal STAT1 mutations reported are exonic and homozygous. We studied a patient with susceptibility to mycobacteria and virus infections, resulting in identification of AR complete STAT1 deficiency due to compound heterozygous mutations, both located in introns: c.128+2 T>G and c.542-8 A>G. Both mutations were the first intronic STAT1 mutations to cause AR complete STAT1 deficiency. Targeted RNA-seq documented the impairment of STAT1 mRNA expression and contributed to the identification of the intronic mutations. The patient's cells showed a lack of STAT1 expression and phosphorylation, and severe impairment of the cellular response to IFN-γ and IFN-α. The case reflects the importance of accurate clinical diagnosis and precise evaluation, to include intronic mutations, in the comprehensive genomic study when the patient lacks molecular pathogenesis. In conclusion, AR complete STAT1 deficiency can be caused by compound heterozygous and intronic mutations. Targeted RNA-seq-based systemic gene expression assay may help to increase diagnostic yield in inconclusive cases after comprehensive genomic study.

11.
J Clin Immunol ; 40(6): 872-882, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32602053

RESUMO

Mendelian susceptibility to mycobacterial diseases (MSMD) is a rare congenital condition characterized by a selective predisposition to infections caused by weakly virulent mycobacteria and other types of intra-macrophagic pathogens. The 16 genes associated with MSMD display a considerable level of allelic heterogeneity, accounting for 31 distinct disorders with variable clinical presentations and prognosis. Most of MSMD deficiencies are isolated, referred to as selective susceptibility to mycobacterial diseases. However, other deficiencies are syndromic MSMD, defined by the combination of the mycobacterial infection with another, equally common, infectious, specific phenotypes. Herein, we described a series of 32 Iranian MSMD cases identified with seven distinct types of molecular defects, all of which are involved in the interferon gamma (IFNγ) immunity, including interleukin IL-12 receptor-ß1 (IL-12Rß1) deficiency (fifteen cases), IL-12p40 deficiency (ten cases), and IL-23R deficiency (three cases), as well as IFNγ receptor 1 (IFNγR1) deficiency, IFNγ receptor 2 (IFNγR2) deficiency, interferon-stimulated gene 15 (ISG15) deficiency, and tyrosine kinase 2 (TYK2) deficiency each in one case. Since the first report of two MSMD patients in our center, we identified 30 other affected patients with similar clinical manifestations. As the number of reported Iranian cases with MSMD diagnosis has increased in recent years and according to the national vaccination protocol, all Iranian newborns receive BCG vaccination at birth, early diagnosis, and therapeutic intervention which are required for a better outcome and also prevention of similar birth defects. Therefore, we investigated the clinical and molecular features of these 32 patients. The current report also defined novel classes of pathological mutations, further expanding our knowledge of the MSMD molecular basis and associated clinical manifestations.

13.
J Clin Immunol ; 40(6): 807-819, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32572726

RESUMO

Down syndrome (DS) is characterized by the occurrence of three copies of human chromosome 21 (HSA21). HSA21 contains a cluster of four interferon receptor (IFN-R) genes: IFNAR1, IFNAR2, IFNGR2, and IL10RB. DS patients often develop mucocutaneous infections and autoimmune diseases, mimicking patients with heterozygous gain-of-function (GOF) STAT1 mutations, which enhance cellular responses to three types of interferon (IFN). A gene dosage effect at these four loci may contribute to the infectious and autoimmune manifestations observed in individuals with DS. We report high levels of IFN-αR1, IFN-αR2, and IFN-γR2 expression on the surface of monocytes and EBV-transformed-B (EBV-B) cells from studying 45 DS patients. Total and phosphorylated STAT1 (STAT1 and pSTAT1) levels were constitutively high in unstimulated and IFN-α- and IFN-γ-stimulated monocytes from DS patients but lower than those in patients with GOF STAT1 mutations. Following stimulation with IFN-α or -γ, but not with IL-6 or IL-21, pSTAT1 and IFN-γ activation factor (GAF) DNA-binding activities were significantly higher in the EBV-B cells of DS patients than in controls. These responses resemble the dysregulated responses observed in patients with STAT1 GOF mutations. Concentrations of plasma type I IFNs were high in 12% of the DS patients tested (1.8% in the healthy controls). Levels of type I IFNs, IFN-Rs, and STAT1 were similar in DS patients with and without recurrent skin infections. We performed a genome-wide transcriptomic analysis based on principal component analysis and interferon modules on circulating monocytes. We found that DS monocytes had levels of both IFN-α- and IFN-γ-inducible ISGs intermediate to those of monocytes from healthy controls and from patients with GOF STAT1 mutations. Unlike patients with GOF STAT1 mutations, patients with DS had normal circulating Th17 counts and a high proportion of terminally differentiated CD8+ T cells with low levels of STAT1 expression. We conclude a mild interferonopathy in Down syndrome leads to an incomplete penetrance at both cellular and clinical level, which is not correlate with recurrent skin bacterial or fungal infections. The constitutive upregulation of type I and type II IFN-R, at least in monocytes of DS patients, may contribute to the autoimmune diseases observed in these individuals.

15.
Mol Ther Methods Clin Dev ; 17: 785-795, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32355867

RESUMO

Autosomal recessive (AR) complete interferon-γ receptor 1 (IFN-γR1) deficiency, also known as one genetic etiology of Mendelian susceptibility to mycobacterial disease (MSMD), is a life-threatening congenital disease leading to premature death. Affected patients present a pathognomonic predisposition to recurrent and severe infections with environmental mycobacteria or the Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine. Current therapeutic options are limited to antibiotic treatment and hematopoietic stem cell transplantation, however with poor outcome. Given the clinical success of gene therapy, we introduce the first lentiviral-based gene therapy approach to restore expression and function of the human IFN-γR-downstream signaling cascade. In our study, we developed lentiviral vectors constitutively expressing the human IFN-γR1 and demonstrate stable transgene expression without interference with cell viability and proliferation in transduced human hematopoietic cells. Using an IFN-γR1-deficient HeLa cell model, we show stable receptor reconstitution and restored IFN-γR1 signaling without adverse effect on cell functionality. Transduction of both SV40-immortalized and primary fibroblasts derived from IFN-γR1-deficient MSMD patients was able to recover IFN-γR1 expression and restore type II IFN signaling upon stimulation with IFN-γ. In summary, we highlight lentiviral vectors to correct the IFN-γ mediated immunity and present the first gene therapy approach for patients suffering from AR complete IFN-γR1 deficiency.

16.
Cell Rep ; 31(6): 107633, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32402279

RESUMO

Most monogenic disorders have a primary clinical presentation. Inherited ISG15 deficiency, however, has manifested with two distinct presentations to date: susceptibility to mycobacterial disease and intracranial calcifications from hypomorphic interferon-II (IFN-II) production and excessive IFN-I response, respectively. Accordingly, these patients were managed for their infectious and neurologic complications. Herein, we describe five new patients with six novel ISG15 mutations presenting with skin lesions who were managed for dermatologic disease. Cellularly, we denote striking specificity to the IFN-I response, which was previously assumed to be universal. In peripheral blood, myeloid cells display the most robust IFN-I signatures. In the affected skin, IFN-I signaling is observed in the keratinocytes of the epidermis, endothelia, and the monocytes and macrophages of the dermis. These findings define the specific cells causing circulating and dermatologic inflammation and expand the clinical spectrum of ISG15 deficiency to dermatologic presentations as a third phenotype co-dominant to the infectious and neurologic manifestations.

17.
GE Port J Gastroenterol ; 27(2): 119-123, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32266309

RESUMO

Background: Chronic granulomatous disease (CGD) is a primary immunodeficiency due to a malfunction of NADPH oxidase. It is characterized by recurrent and severe infections caused by catalase-positive microorganisms and autoinflammatory manifestations. Recently, there has been described an NCF4 gene variant that causes a deficiency of p40phox, a subunit of NADPH oxidase. Patients with this deficiency appear to have a less severe clinical form as compared to classic CGD. Case: A 15-year-old girl with vulvar lichen planus since she was 2 years old and suspected Crohn's disease (CD) was first seen at our hospital. At the age of 12 years, she had been submitted to sacrococcygeal cyst exeresis, without cicatrization of the surgical wound and extension of the lesion to the perianal area. The diagnosis of CD was questioned, and the patient underwent an endoscopic and radiologic assessment, which was normal. A skin biopsy from the perianal area revealed a granuloma; thus, CD with isolated perianal disease was assumed. After several different treatments including antibiotics, infliximab, and adalimumab, the perianal lesion persisted, with no associated gastrointestinal symptoms. Therefore, the hypothesis of an immunodeficiency was considered. An immunologic and genetic study revealed reduced oxidative burst in the phorbol myristate acetate test, with diminished reactive oxygen species production and a homozygous mutation in the NCF4 gene. The adolescent started prophylactic trimethoprim-sulfamethoxazole and became asymptomatic. Conclusions: The present case highlights that alternative diagnoses to CD must be considered in the presence of isolated perianal disease with granulomatous inflammation, especially when the disease is refractory to conventional CD therapy.

18.
Mol Genet Genomic Med ; 8(6): e1237, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32281309

RESUMO

BACKGROUND: Chronic granulomatous disease (CGD) is a rare primary immunodeficiency disorder (PID) affecting NADPH oxidase activity. The rarest form of the disease is considered to be caused by NCF2 gene bi-allelic variant. Here, we report the clinical and molecular characterization of a patient presenting with early-onset severe disease due to bi-allelic NCF2 variant. METHODS: Gene mutational analysis was performed by whole-exome and Sanger sequencing. RESULTS: The patient presented with a history of fever and rash since the age of 1 month, followed by destructive osteomyelitis and necrotizing lymphadenopathy. The patient received the Bacillus Calmette-Guérin (BCG) vaccine at birth; she was subsequently diagnosed with disseminated BCG infection. Whole-exome sequencing identified a private (unreported) homozygous variant in NCF2 (c.290C > A) that results in a nonconservative change, p.Ala97Asp, in the p67phox protein. The variant is located in the third helix of the TRP domain, which is crucial for the binding of GTPase RAC2 to the NADPH oxidase complex. CONCLUSION: We identified a novel NCF2 variant located in the region interacting with RAC2 that is linked to a severe and early CGD phenotype in the setting of disseminated BCG infection. Our findings support postponing BCG vaccination until 6-12 months of age and after PID assessment.

19.
J Clin Invest ; 130(6): 3158-3171, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32163377

RESUMO

Mendelian susceptibility to mycobacterial disease (MSMD) is characterized by a selective predisposition to clinical disease caused by the Bacille Calmette-Guérin (BCG) vaccine and environmental mycobacteria. The known genetic etiologies of MSMD are inborn errors of IFN-γ immunity due to mutations of 15 genes controlling the production of or response to IFN-γ. Since the first MSMD-causing mutations were reported in 1996, biallelic mutations in the genes encoding IFN-γ receptor 1 (IFN-γR1) and IFN-γR2 have been reported in many patients of diverse ancestries. Surprisingly, mutations of the gene encoding the IFN-γ cytokine itself have not been reported, raising the remote possibility that there might be other agonists of the IFN-γ receptor. We describe 2 Lebanese cousins with MSMD, living in Kuwait, who are both homozygous for a small deletion within the IFNG gene (c.354_357del), causing a frameshift that generates a premature stop codon (p.T119Ifs4*). The mutant allele is loss of expression and loss of function. We also show that the patients' herpesvirus Saimiri-immortalized T lymphocytes did not produce IFN-γ, a phenotype that can be rescued by retrotransduction with WT IFNG cDNA. The blood T and NK lymphocytes from these patients also failed to produce and secrete detectable amounts of IFN-γ. Finally, we show that human IFNG has evolved under stronger negative selection than IFNGR1 or IFNGR2, suggesting that it is less tolerant to heterozygous deleterious mutations than IFNGR1 or IFNGR2. This may account for the rarity of patients with autosomal-recessive, complete IFN-γ deficiency relative to patients with complete IFN-γR1 and IFN-γR2 deficiencies.

20.
J Exp Med ; 217(5)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32092142

RESUMO

Type I interferonopathies are monogenic disorders characterized by enhanced type I interferon (IFN-I) cytokine activity. Inherited USP18 and ISG15 deficiencies underlie type I interferonopathies by preventing the regulation of late responses to IFN-I. Specifically, USP18, being stabilized by ISG15, sterically hinders JAK1 from binding to the IFNAR2 subunit of the IFN-I receptor. We report an infant who died of autoinflammation due to a homozygous missense mutation (R148Q) in STAT2. The variant is a gain of function (GOF) for induction of the late, but not early, response to IFN-I. Surprisingly, the mutation does not enhance the intrinsic activity of the STAT2-containing transcriptional complex responsible for IFN-I-stimulated gene induction. Rather, the STAT2 R148Q variant is a GOF because it fails to appropriately traffic USP18 to IFNAR2, thereby preventing USP18 from negatively regulating responses to IFN-I. Homozygosity for STAT2 R148Q represents a novel molecular and clinical phenocopy of inherited USP18 deficiency, which, together with inherited ISG15 deficiency, defines a group of type I interferonopathies characterized by an impaired regulation of late cellular responses to IFN-I.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA