Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Epidemiol ; 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578044

RESUMO

BACKGROUND: There is a need to test the fetal programming theoretical framework in nutritional epidemiology. We evaluated whether maternal seafood intake during pregnancy was associated with 8-year-old attention outcomes after adjusting for previous child seafood intake and cognitive function. We also explored effect modification by several single nucleotide polymorphisms (SNPs) related with polyunsaturated fatty acid (PUFA) metabolism. METHODS: Our final analyses included 1644 mother-child pairs from the prospective INMA (INfancia y Medio Ambiente) cohort study (Spain, recruitment between 2003 and 2008). We used food frequency questionnaires to assess prenatal and postnatal seafood consumption of the mother-child pairs. We evaluated attention function of the children through the computer-based Attention Network Test (ANT) and we used the number of omission errors and the hit reaction time standard error (HRT-SE). Parents reported child attention deficit hyperactivity disorder (ADHD) symptoms using the Revised Conners' Parent Rating Scale Short Form (CPRS-R: S). We measured seven candidate SNPs in a subsample of 845 children. We estimated associations using regression models, adjusting for family characteristics, child seafood intake and cognitive functions at early ages, and to explore SNP effect modifications. RESULTS: Higher total seafood intake during early pregnancy was associated with a reduction of child ANT omission errors, 5th quintile (median = 854 g/week) vs 1st quintile (median = 195 g/week), incidence risk ratio (IRR) 0.76; 95% CI = 0.61, 0.94. Similar results were observed after adjusting the models for child seafood intake and previous cognitive status. Lean, large and small fatty fish showed similar results, and generally similar but less robust associations were observed with the other attention outcomes. Shellfish and canned tuna showed weaker associations. The association patterns were weaker in late pregnancy and null in child seafood consumption. Child rs1260326 (glucokinase regulator, GCKR) and child/maternal rs2281591 (fatty acid elongase 2, ELOVL2) polymorphisms showed nominal P-value for interactions <0.10 between total seafood intake and ANT outcomes. CONCLUSIONS: After adjusting for previous child cognitive functions and child seafood intake, high pregnancy consumption (total, lean, small and large fatty fish) was independently associated with improvements of some 8-year-old attention outcomes. Genetic effect modification analyses suggest PUFA intake from seafood as a potential biological mechanism of such association.

2.
Nat Commun ; 10(1): 3927, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477735

RESUMO

The duration of pregnancy is influenced by fetal and maternal genetic and non-genetic factors. Here we report a fetal genome-wide association meta-analysis of gestational duration, and early preterm, preterm, and postterm birth in 84,689 infants. One locus on chromosome 2q13 is associated with gestational duration; the association is replicated in 9,291 additional infants (combined P = 3.96 × 10-14). Analysis of 15,588 mother-child pairs shows that the association is driven by fetal rather than maternal genotype. Functional experiments show that the lead SNP, rs7594852, alters the binding of the HIC1 transcriptional repressor. Genes at the locus include several interleukin 1 family members with roles in pro-inflammatory pathways that are central to the process of parturition. Further understanding of the underlying mechanisms will be of great public health importance, since giving birth either before or after the window of term gestation is associated with increased morbidity and mortality.

3.
Sci Rep ; 9(1): 13407, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31527690

RESUMO

Dyslipidemia and statin use have been associated with colorectal cancer (CRC), but prospective studies have shown mixed results. We aimed to determine whether dyslipidemia is causally linked to CRC risk using a Mendelian randomization approach and to explore the association of statins with CRC. A case-control study was performed including 1336 CRC cases and 2744 controls (MCC-Spain). Subjects were administered an epidemiological questionnaire and were genotyped with an array which included polymorphisms associated with blood lipids levels, selected to avoid pleiotropy. Four genetic lipid scores specific for triglycerides (TG), high density lipoprotein cholesterol (HDL), low density lipoprotein cholesterol (LDL), or total cholesterol (TC) were created as the count of risk alleles. The genetic lipid scores were not associated with CRC. The ORs per 10 risk alleles, were for TG 0.91 (95%CI: 0.72-1.16, p = 0.44), for HDL 1.14 (95%CI: 0.95-1.37, p = 0.16), for LDL 0.97 (95%CI: 0.81-1.16, p = 0.73), and for TC 0.98 (95%CI: 0.84-1.17, p = 0.88). The LDL and TC genetic risk scores were associated with statin use, but not the HDL or TG. Statin use, overall, was a non-significant protective factor for CRC (OR 0.84; 95%CI: 0.70-1.01, p = 0.060), but lipophilic statins were associated with a CRC risk reduction (OR 0.78; 95%CI 0.66-0.96, p = 0.018). Using the Mendelian randomization approach, our study does not support the hypothesis that lipid levels are associated with the risk of CRC. This study does not rule out, however, a possible protective effect of statins in CRC by a mechanism unrelated to lipid levels.

5.
Environ Health Perspect ; 127(8): 87001, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31393792

RESUMO

BACKGROUND: Telomere length is a molecular marker of biological aging. OBJECTIVE: Here we investigated whether early-life exposure to residential air pollution was associated with leukocyte telomere length (LTL) at 8 y of age. METHODS: In a multicenter European birth cohort study, HELIX (Human Early Life Exposome) ([Formula: see text]), we estimated prenatal and 1-y childhood exposure to nitrogen dioxide ([Formula: see text]), particulate matter with aerodynamic diameter [Formula: see text] ([Formula: see text]), and proximity to major roads. Average relative LTL was measured using quantitative real-time polymerase chain reaction (qPCR). Effect estimates of the association between LTL and prenatal, 1-y childhood air pollution, and proximity to major roads were calculated using multiple linear mixed models with a random cohort effect and adjusted for relevant covariates. RESULTS: LTL was inversely associated with prenatal and 1-y childhood [Formula: see text] and [Formula: see text] exposures levels. Each standard deviation (SD) increase in prenatal [Formula: see text] was associated with a [Formula: see text] (95% CI: [Formula: see text], [Formula: see text]) change in LTL. Prenatal [Formula: see text] was nonsignificantly associated with LTL ([Formula: see text] per SD increase; 95% CI: [Formula: see text], 0.6). For each SD increment in 1-y childhood [Formula: see text] and [Formula: see text] exposure, LTL shortened by [Formula: see text] (95% CI: [Formula: see text], [Formula: see text]) and [Formula: see text] (95% CI: [Formula: see text], 0.1), respectively. Each doubling in residential distance to nearest major road during childhood was associated with a 1.6% (95% CI: 0.02, 3.1) lengthening in LTL. CONCLUSION: Lower exposures to air pollution during pregnancy and childhood were associated with longer telomeres in European children at 8 y of age. These results suggest that reductions in traffic-related air pollution may promote molecular longevity, as exemplified by telomere length, from early life onward. https://doi.org/10.1289/EHP4148.

6.
Environ Health Perspect ; 127(5): 57012, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31148503

RESUMO

BACKGROUND: Prenatal exposure to air pollution has been associated with childhood respiratory disease and other adverse outcomes. Epigenetics is a suggested link between exposures and health outcomes. OBJECTIVES: We aimed to investigate associations between prenatal exposure to particulate matter (PM) with diameter [Formula: see text] ([Formula: see text]) or [Formula: see text] ([Formula: see text]) and DNA methylation in newborns and children. METHODS: We meta-analyzed associations between exposure to [Formula: see text] ([Formula: see text]) and [Formula: see text] ([Formula: see text]) at maternal home addresses during pregnancy and newborn DNA methylation assessed by Illumina Infinium HumanMethylation450K BeadChip in nine European and American studies, with replication in 688 independent newborns and look-up analyses in 2,118 older children. We used two approaches, one focusing on single cytosine-phosphate-guanine (CpG) sites and another on differentially methylated regions (DMRs). We also related PM exposures to blood mRNA expression. RESULTS: Six CpGs were significantly associated [false discovery rate (FDR) [Formula: see text]] with prenatal [Formula: see text] and 14 with [Formula: see text] exposure. Two of the [Formula: see text] CpGs mapped to FAM13A (cg00905156) and NOTCH4 (cg06849931) previously associated with lung function and asthma. Although these associations did not replicate in the smaller newborn sample, both CpGs were significant ([Formula: see text]) in 7- to 9-y-olds. For cg06849931, however, the direction of the association was inconsistent. Concurrent [Formula: see text] exposure was associated with a significantly higher NOTCH4 expression at age 16 y. We also identified several DMRs associated with either prenatal [Formula: see text] and or [Formula: see text] exposure, of which two [Formula: see text] DMRs, including H19 and MARCH11, replicated in newborns. CONCLUSIONS: Several differentially methylated CpGs and DMRs associated with prenatal PM exposure were identified in newborns, with annotation to genes previously implicated in lung-related outcomes. https://doi.org/10.1289/EHP4522.

7.
Epigenetics ; 14(12): 1177-1182, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31250700

RESUMO

Illumina HumanMethylation450 BeadChip (450K) has been commonly used to investigate DNA methylation in human tissues. Recently, it has been replaced by Illumina HumanMethylationEPIC BeadChip (EPIC) covering over 850,000 CpGs distributed genome-wide. Many consortia have now datasets coming from both arrays and aspire to analyze the two together. The placenta shows a high number of intermediate methylation levels and is often investigated for obstetric/birth outcomes, and potentially for long-term programming in offspring. We performed a systematic comparison between the two arrays using 108 duplicate placental samples from Gen3G birth cohort. We find that placenta shows a high per-sample correlation between the arrays, and higher median correlations at individual CpGs than those reported for blood. We identify 26,340 probes with absolute difference in per cent methylation >10%. We conclude that EPIC and 450K placental data can be combined, and we provide two lists of CpGs that should be excluded to avoid misleading results.

8.
Nat Commun ; 10(1): 1893, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015461

RESUMO

Birthweight is associated with health outcomes across the life course, DNA methylation may be an underlying mechanism. In this meta-analysis of epigenome-wide association studies of 8,825 neonates from 24 birth cohorts in the Pregnancy And Childhood Epigenetics Consortium, we find that DNA methylation in neonatal blood is associated with birthweight at 914 sites, with a difference in birthweight ranging from -183 to 178 grams per 10% increase in methylation (PBonferroni < 1.06 x 10-7). In additional analyses in 7,278 participants, <1.3% of birthweight-associated differential methylation is also observed in childhood and adolescence, but not adulthood. Birthweight-related CpGs overlap with some Bonferroni-significant CpGs that were previously reported to be related to maternal smoking (55/914, p = 6.12 x 10-74) and BMI in pregnancy (3/914, p = 1.13x10-3), but not with those related to folate levels in pregnancy. Whether the associations that we observe are causal or explained by confounding or fetal growth influencing DNA methylation (i.e. reverse causality) requires further research.


Assuntos
Peso ao Nascer/genética , DNA/metabolismo , Epigênese Genética , Genoma Humano , Adolescente , Adulto , Índice de Massa Corporal , Criança , Ilhas de CpG , DNA/genética , Metilação de DNA , Feminino , Desenvolvimento Fetal/genética , Feto , Ácido Fólico/sangue , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/sangue , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Fumar/efeitos adversos , Fumar/sangue , Fumar/genética
9.
Eur Respir J ; 53(4)2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30765504

RESUMO

RATIONALE: We aimed to identify differentially methylated regions (DMRs) in cord blood DNA associated with childhood lung function, asthma and chronic obstructive pulmonary disease (COPD) across the life course. METHODS: We meta-analysed epigenome-wide data of 1688 children from five cohorts to identify cord blood DMRs and their annotated genes, in relation to forced expiratory volume in 1 s (FEV1), FEV1/forced vital capacity (FVC) ratio and forced expiratory flow at 75% of FVC at ages 7-13 years. Identified DMRs were explored for associations with childhood asthma, adult lung function and COPD, gene expression and involvement in biological processes. RESULTS: We identified 59 DMRs associated with childhood lung function, of which 18 were associated with childhood asthma and nine with COPD in adulthood. Genes annotated to the top 10 identified DMRs were HOXA5, PAOX, LINC00602, ABCA7, PER3, CLCA1, VENTX, NUDT12, PTPRN2 and TCL1A. Differential gene expression in blood was observed for 32 DMRs in childhood and 18 in adulthood. Genes related with 16 identified DMRs were associated with respiratory developmental or pathogenic pathways. INTERPRETATION: Our findings suggest that the epigenetic status of the newborn affects respiratory health and disease across the life course.

10.
Int J Epidemiol ; 48(1): 45-57, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541029

RESUMO

BACKGROUND: Accumulating evidence suggests that breastfeeding benefits children's intelligence, possibly due to long-chain polyunsaturated fatty acids (LC-PUFAs) present in breast milk. Under a nutritional adequacy hypothesis, an interaction between breastfeeding and genetic variants associated with endogenous LC-PUFAs synthesis might be expected. However, the literature on this topic is controversial. METHODS: We investigated this gene × environment interaction through a collaborative effort. The primary analysis involved >12 000 individuals and used ever breastfeeding, FADS2 polymorphisms rs174575 and rs1535 coded assuming a recessive effect of the G allele, and intelligence quotient (IQ) in Z scores. RESULTS: There was no strong evidence of interaction, with pooled covariate-adjusted interaction coefficients (i.e. difference between genetic groups of the difference in IQ Z scores comparing ever with never breastfed individuals) of 0.12[(95% confidence interval (CI): -0.19; 0.43] and 0.06 (95% CI: -0.16; 0.27) for the rs174575 and rs1535 variants, respectively. Secondary analyses corroborated these results. In studies with ≥5.85 and <5.85 months of breastfeeding duration, pooled estimates for the rs174575 variant were 0.50 (95% CI: -0.06; 1.06) and 0.14 (95% CI: -0.10; 0.38), respectively, and 0.27 (95% CI: -0.28; 0.82) and -0.01 (95% CI: -0.19; 0.16) for the rs1535 variant. CONCLUSIONS: Our findings did not support an interaction between ever breastfeeding and FADS2 polymorphisms. However, subgroup analysis suggested that breastfeeding may supply LC-PUFAs requirements for cognitive development if breastfeeding lasts for some (currently unknown) time. Future studies in large individual-level datasets would allow properly powered subgroup analyses and further improve our understanding on the breastfeeding × FADS2 interaction.

11.
J Allergy Clin Immunol ; 143(6): 2062-2074, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30579849

RESUMO

BACKGROUND: Epigenetic mechanisms, including methylation, can contribute to childhood asthma. Identifying DNA methylation profiles in asthmatic patients can inform disease pathogenesis. OBJECTIVE: We sought to identify differential DNA methylation in newborns and children related to childhood asthma. METHODS: Within the Pregnancy And Childhood Epigenetics consortium, we performed epigenome-wide meta-analyses of school-age asthma in relation to CpG methylation (Illumina450K) in blood measured either in newborns, in prospective analyses, or cross-sectionally in school-aged children. We also identified differentially methylated regions. RESULTS: In newborns (8 cohorts, 668 cases), 9 CpGs (and 35 regions) were differentially methylated (epigenome-wide significance, false discovery rate < 0.05) in relation to asthma development. In a cross-sectional meta-analysis of asthma and methylation in children (9 cohorts, 631 cases), we identified 179 CpGs (false discovery rate < 0.05) and 36 differentially methylated regions. In replication studies of methylation in other tissues, most of the 179 CpGs discovered in blood replicated, despite smaller sample sizes, in studies of nasal respiratory epithelium or eosinophils. Pathway analyses highlighted enrichment for asthma-relevant immune processes and overlap in pathways enriched both in newborns and children. Gene expression correlated with methylation at most loci. Functional annotation supports a regulatory effect on gene expression at many asthma-associated CpGs. Several implicated genes are targets for approved or experimental drugs, including IL5RA and KCNH2. CONCLUSION: Novel loci differentially methylated in newborns represent potential biomarkers of risk of asthma by school age. Cross-sectional associations in children can reflect both risk for and effects of disease. Asthma-related differential methylation in blood in children was substantially replicated in eosinophils and respiratory epithelium.

12.
BMJ Open ; 8(9): e021311, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30206078

RESUMO

PURPOSE: Essential to exposome research is the collection of data on many environmental exposures from different domains in the same subjects. The aim of the Human Early Life Exposome (HELIX) study was to measure and describe multiple environmental exposures during early life (pregnancy and childhood) in a prospective cohort and associate these exposures with molecular omics signatures and child health outcomes. Here, we describe recruitment, measurements available and baseline data of the HELIX study populations. PARTICIPANTS: The HELIX study represents a collaborative project across six established and ongoing longitudinal population-based birth cohort studies in six European countries (France, Greece, Lithuania, Norway, Spain and the UK). HELIX used a multilevel study design with the entire study population totalling 31 472 mother-child pairs, recruited during pregnancy, in the six existing cohorts (first level); a subcohort of 1301 mother-child pairs where biomarkers, omics signatures and child health outcomes were measured at age 6-11 years (second level) and repeat-sampling panel studies with around 150 children and 150 pregnant women aimed at collecting personal exposure data (third level). FINDINGS TO DATE: Cohort data include urban environment, hazardous substances and lifestyle-related exposures for women during pregnancy and their offspring from birth until 6-11 years. Common, standardised protocols were used to collect biological samples, measure exposure biomarkers and omics signatures and assess child health across the six cohorts. Baseline data of the cohort show substantial variation in health outcomes and determinants between the six countries, for example, in family affluence levels, tobacco smoking, physical activity, dietary habits and prevalence of childhood obesity, asthma, allergies and attention deficit hyperactivity disorder. FUTURE PLANS: HELIX study results will inform on the early life exposome and its association with molecular omics signatures and child health outcomes. Cohort data are accessible for future research involving researchers external to the project.

13.
Int J Methods Psychiatr Res ; 27(3): e1738, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30105890

RESUMO

OBJECTIVES: We proposed the application of a multivariate cross-sectional framework based on a combination of a variable selection method and a multiple factor analysis (MFA) in order to identify complex meaningful biological signals related to attention-deficit/hyperactivity disorder (ADHD) symptoms and hyperactivity/inattention domains. METHODS: The study included 135 children from the general population with genomic and neuroimaging data. ADHD symptoms were assessed using a questionnaire based on ADHD-DSM-IV criteria. In all analyses, the raw sum scores of the hyperactivity and inattention domains and total ADHD were used. The analytical framework comprised two steps. First, zero-inflated negative binomial linear model via penalized maximum likelihood (LASSO-ZINB) was performed. Second, the most predictive features obtained with LASSO-ZINB were used as input for the MFA. RESULTS: We observed significant relationships between ADHD symptoms and hyperactivity and inattention domains with white matter, gray matter regions, and cerebellum, as well as with loci within chromosome 1. CONCLUSIONS: Multivariate methods can be used to advance the neurobiological characterization of complex diseases, improving the statistical power with respect to univariate methods, allowing the identification of meaningful biological signals in Imaging Genetic studies.

14.
Environ Sci Pollut Res Int ; 25(29): 29572-29583, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30141164

RESUMO

The molecular mechanisms that promote pathologic alterations in human physiology mediated by short-term exposure to traffic pollutants remains not well understood. This work was to develop mechanistic networks to determine which specific pathways are activated by real-world exposures of traffic-related air pollution (TRAP) during rest and moderate physical activity (PA). A controlled crossover study to compare whole blood gene expression pre and post short-term exposure to high and low of TRAP was performed together with systems biology analysis. Twenty-eight healthy volunteers aged between 21 and 53 years were recruited. These subjects were exposed during 2 h to different pollution levels (high and low TRAP levels), while either cycling or resting. Global transcriptome profile of each condition was performed from human whole blood samples. Microarrays analysis was performed to obtain differential expressed genes (DEG) to be used as initial input for GeneMANIA software to obtain protein-protein (PPI) networks. Two networks were found reflecting high or low TRAP levels, which shared only 5.6 and 15.5% of its nodes, suggesting specific cell signaling pathways being activated in each environmental condition. However, gene ontology analysis of each PPI network suggests that each level of TRAP regulate common members of NF-κB signaling pathway. Our work provides the first approach describing mechanistic networks to understand TRAP effects on a system level.

15.
Environ Health Perspect ; 126(8): 087001, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30073950

RESUMO

BACKGROUND: Traffic-related air pollution is emerging as a risk factor for Alzheimer's disease (AD) and impaired brain development. Individual differences in vulnerability to air pollution may involve the ε4 allele of Apolipoprotein E (APOE) gene, the primary genetic risk factor for AD. OBJECTIVE: We analyzed whether the association between traffic air pollution and neurodevelopmental outcomes is modified by APOEε4 status in children. METHODS: Data on parent-reported behavior problems (total difficulties scores, Strengths and Difficulties Questionnaire), teacher-reported attention-deficit hyperactivity disorder (ADHD) symptom scores, cognitive performance trajectories (computerized tests of inattentiveness and working memory repeated 2-4 times during January 2012-March 2013), and APOE genotypes were obtained for 1,667 children age 7-11 y attending 39 schools in or near Barcelona. Basal ganglia volume (putamen, caudate, and globus pallidum) was measured in 163 of the children by MRI (October 2012-April 2014.) Average annual outdoor polycyclic aromatic hydrocarbons (PAHs), elemental carbon (EC), and nitrogen dioxide (NO2) concentrations were estimated based on measurements at each school (two 1-wk campaigns conducted 6 months apart in 2012). RESULTS: APOEε4 allele carriers had significantly higher behavior problem scores than noncarriers, and adverse associations with PAHs and NO2 were stronger or limited to ε4 carriers for behavior problem scores (P-interaction 0.03 and 0.04), caudate volume (P-interaction 0.04 and 0.03), and inattentiveness trajectories (P-interaction 0.15 and 0.08, respectively). Patterns of associations with the same outcomes were similar for EC. CONCLUSION: PAHs, EC, and NO2 were associated with higher behavior problem scores, smaller reductions in inattentiveness over time, and smaller caudate volume in APOEε4 allele carriers in our study population, and corresponding associations were weak or absent among ε4 noncarriers. These findings support a potential role of APOE in biological mechanisms that may contribute to associations between air pollution and neurobehavioral outcomes in children. https://doi.org/10.1289/EHP2246.

16.
Neurosci Biobehav Rev ; 93: 57-70, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29944960

RESUMO

Imaging Genetics (IG) integrates neuroimaging and genomic data from the same individual, deepening our knowledge of the biological mechanisms behind neurodevelopmental domains and neurological disorders. Although the literature on IG has exponentially grown over the past years, the majority of studies have mainly analyzed associations between candidate brain regions and individual genetic variants. However, this strategy is not designed to deal with the complexity of neurobiological mechanisms underlying behavioral and neurodevelopmental domains. Moreover, larger sample sizes and increased multidimensionality of this type of data represents a challenge for standardizing modeling procedures in IG research. This review provides a systematic update of the methods and strategies currently used in IG studies, and serves as an analytical framework for researchers working in this field. To complement the functionalities of the Neuroconductor framework, we also describe existing R packages that implement these methodologies. In addition, we present an overview of how these methodological approaches are applied in integrating neuroimaging and genetic data.

17.
PLoS One ; 13(3): e0193527, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29505615

RESUMO

Circulating small RNAs, including miRNAs but also isomiRs and other RNA species, have the potential to be used as non-invasive biomarkers for communicable and non-communicable diseases. This study aims to characterize and compare small RNA profiles in human biofluids. For this purpose, RNA was extracted from plasma and breast milk samples from 15 healthy postpartum mothers. Small RNA libraries were prepared with the NEBNext® small RNA library preparation kit and sequenced in an Illumina HiSeq2000 platform. miRNAs, isomiRs and clusters of small RNAs were annotated using seqBuster/seqCluster framework in 5 plasma and 10 milk samples that passed the initial quality control. The RNA yield was 81 ng/mL [standard deviation (SD): 41] and 3985 ng/mL (SD: 3767) for plasma and breast milk, respectively. Mean number of good quality reads was 4.04 million (M) (40.01% of the reads) in plasma and 12.5M (89.6%) in breast milk. One thousand one hundred eighty two miRNAs, 12,084 isomiRs and 1,053 small RNA clusters that included piwi-interfering RNAs (piRNAs), tRNAs, small nucleolar RNAs (snoRNA) and small nuclear RNAs (snRNAs) were detected. Samples grouped by biofluid, with 308 miRNAs, 1,790 isomiRs and 778 small RNA clusters differentially detected. In summary, plasma and milk showed a different small RNA profile. In both, miRNAs, piRNAs, tRNAs, snRNAs, and snoRNAs were identified, confirming the presence of non-miRNA species in plasma, and describing them for the first time in milk.


Assuntos
MicroRNAs/sangue , MicroRNAs/metabolismo , Leite Humano/metabolismo , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Adulto Jovem
18.
Lancet Respir Med ; 6(5): 379-388, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29496485

RESUMO

BACKGROUND: DNA methylation profiles associated with childhood asthma might provide novel insights into disease pathogenesis. We did an epigenome-wide association study to assess methylation profiles associated with childhood asthma. METHODS: We did a large-scale epigenome-wide association study (EWAS) within the Mechanisms of the Development of ALLergy (MeDALL) project. We examined epigenome-wide methylation using Illumina Infinium Human Methylation450 BeadChips (450K) in whole blood in 207 children with asthma and 610 controls at age 4-5 years, and 185 children with asthma and 546 controls at age 8 years using a cross-sectional case-control design. After identification of differentially methylated CpG sites in the discovery analysis, we did a validation study in children (4-16 years; 247 cases and 2949 controls) from six additional European cohorts and meta-analysed the results. We next investigated whether replicated CpG sites in cord blood predict later asthma in 1316 children. We subsequently investigated cell-type-specific methylation of the identified CpG sites in eosinophils and respiratory epithelial cells and their related gene-expression signatures. We studied cell-type specificity of the asthma association of the replicated CpG sites in 455 respiratory epithelial cell samples, collected by nasal brushing of 16-year-old children as well as in DNA isolated from blood eosinophils (16 with asthma, eight controls [age 2-56 years]) and compared this with whole-blood DNA samples of 74 individuals with asthma and 93 controls (age 1-79 years). Whole-blood transcriptional profiles associated with replicated CpG sites were annotated using RNA-seq data of subsets of peripheral blood mononuclear cells sorted by fluorescence-activated cell sorting. FINDINGS: 27 methylated CpG sites were identified in the discovery analysis. 14 of these CpG sites were replicated and passed genome-wide significance (p<1·14 × 10-7) after meta-analysis. Consistently lower methylation levels were observed at all associated loci across childhood from age 4 to 16 years in participants with asthma, but not in cord blood at birth. All 14 CpG sites were significantly associated with asthma in the second replication study using whole-blood DNA, and were strongly associated with asthma in purified eosinophils. Whole-blood transcriptional signatures associated with these CpG sites indicated increased activation of eosinophils, effector and memory CD8 T cells and natural killer cells, and reduced number of naive T cells. Five of the 14 CpG sites were associated with asthma in respiratory epithelial cells, indicating cross-tissue epigenetic effects. INTERPRETATION: Reduced whole-blood DNA methylation at 14 CpG sites acquired after birth was strongly associated with childhood asthma. These CpG sites and their associated transcriptional profiles indicate activation of eosinophils and cytotoxic T cells in childhood asthma. Our findings merit further investigations of the role of epigenetics in a clinical context. FUNDING: EU and the Seventh Framework Programme (the MeDALL project).


Assuntos
Asma/genética , Ilhas de CpG , Metilação de DNA , Eosinófilos/imunologia , Epigênese Genética , Asma/sangue , Criança , Pré-Escolar , DNA/sangue , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Linfócitos T Citotóxicos
19.
Environ Sci Technol ; 52(9): 5427-5437, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29597345

RESUMO

Maternal exposure to airborne particulate matter (PM) has been associated with restricted fetal growth and reduced birthweight. Here, we performed methylome-wide analyses of cord and children's blood DNA in relation to residential exposure to PM smaller than 10 µm (PM10). This study included participants of the Avon Longitudinal Study of Pregnancy and Childhood (ALSPAC, cord blood, n = 780; blood at age 7, n = 757 and age 15-17, n = 850) and the EXPOsOMICS birth cohort consortium including cord blood from ENVIR ONAGE ( n = 197), INMA ( n = 84), Piccolipiù ( n = 99) and Rhea ( n = 75). We could not identify significant CpG sites, by meta-analyzing associations between maternal PM10 exposure during pregnancy and DNA methylation in cord blood, nor by studying DNA methylation and concordant annual exposure at 7 and 15-17 years. The CpG cg21785536 was inversely associated with PM10 exposure using a longitudinal model integrating the three studied age groups (-1.2% per 10 µg/m3; raw p-value = 3.82 × 10-8). Pathway analyses on the corresponding genes of the 100 strongest associated CpG sites of the longitudinal model revealed enriched pathways relating to the GABAergic synapse, p53 signaling and NOTCH1. We provided evidence that residential PM10 exposure in early life affects methylation of the CpG cg21785536 located on the EGF Domain Specific O-Linked N-Acetylglucosamine Transferase gene.

20.
Sci Rep ; 8(1): 3036, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29445177

RESUMO

A breast-risk score, published in 2016, was developed in white-American women using 92 genetic variants (GRS92), modifiable and non-modifiable risk factors. With the aim of validating the score in the Spanish population, 1,732 breast cancer cases and 1,910 controls were studied. The GRS92, modifiable and non-modifiable risk factor scores were estimated via logistic regression. SNPs without available genotyping were simulated as in the aforementioned 2016 study. The full model score was obtained by combining GRS92, modifiable and non-modifiable risk factor scores. Score performances were tested via the area under the ROC curve (AUROC), net reclassification index (NRI) and integrated discrimination improvement (IDI). Compared with non-modifiable and modifiable factor scores, GRS92 had higher discrimination power (AUROC: 0.6195, 0.5885 and 0.5214, respectively). Adding the non-modifiable factor score to GRS92 improved patient classification by 23.6% (NRI = 0.236), while the modifiable factor score only improved it by 7.2%. The full model AUROC reached 0.6244. A simulation study showed the ability of the full model for identifying women at high risk for breast cancer. In conclusion, a model combining genetic and risk factors can be used for stratifying women by their breast cancer risk, which can be applied to individualizing genetic counseling and screening recommendations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA