Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cochrane Database Syst Rev ; 9: CD010216, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34519354

RESUMO

BACKGROUND: Electronic cigarettes (ECs) are handheld electronic vaping devices which produce an aerosol formed by heating an e-liquid. Some people who smoke use ECs to stop or reduce smoking, but some organizations, advocacy groups and policymakers have discouraged this, citing lack of evidence of efficacy and safety. People who smoke, healthcare providers and regulators want to know if ECs can help people quit and if they are safe to use for this purpose. This is an update conducted as part of a living systematic review. OBJECTIVES: To examine the effectiveness, tolerability, and safety of using electronic cigarettes (ECs) to help people who smoke tobacco achieve long-term smoking abstinence. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group's Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and PsycINFO to 1 May 2021, and reference-checked and contacted study authors. We screened abstracts from the Society for Research on Nicotine and Tobacco (SRNT) 2021 Annual Meeting.   SELECTION CRITERIA: We included randomized controlled trials (RCTs) and randomized cross-over trials, in which people who smoke were randomized to an EC or control condition. We also included uncontrolled intervention studies in which all participants received an EC intervention. Studies had to report abstinence from cigarettes at six months or longer or data on safety markers at one week or longer, or both. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methods for screening and data extraction. Our primary outcome measures were abstinence from smoking after at least six months follow-up, adverse events (AEs), and serious adverse events (SAEs). Secondary outcomes included the proportion of people still using study product (EC or pharmacotherapy) at six or more months after randomization or starting EC use, changes in carbon monoxide (CO), blood pressure (BP), heart rate, arterial oxygen saturation, lung function, and levels of carcinogens or toxicants or both. We used a fixed-effect Mantel-Haenszel model to calculate risk ratios (RRs) with a 95% confidence interval (CI) for dichotomous outcomes. For continuous outcomes, we calculated mean differences. Where appropriate, we pooled data in meta-analyses. MAIN RESULTS: We included 61 completed studies, representing 16,759 participants, of which 34 were RCTs. Five of the 61 included studies were new to this review update. Of the included studies, we rated seven (all contributing to our main comparisons) at low risk of bias overall, 42 at high risk overall (including all non-randomized studies), and the remainder at unclear risk. There was moderate-certainty evidence, limited by imprecision, that quit rates were higher in people randomized to nicotine EC than in those randomized to nicotine replacement therapy (NRT) (risk ratio (RR) 1.53, 95% confidence interval (CI) 1.21 to 1.93; I2 = 0%; 4 studies, 1924 participants). In absolute terms, this might translate to an additional three quitters per 100 (95% CI 1 to 6). There was low-certainty evidence (limited by very serious imprecision) that the rate of occurrence of AEs was similar (RR 0.98, 95% CI 0.80 to 1.19; I2 = 0%; 2 studies, 485 participants). SAEs were rare, but there was insufficient evidence to determine whether rates differed between groups due to very serious imprecision (RR 1.30, 95% CI 0.89 to 1.90: I2 = 0; 4 studies, 1424 participants). There was moderate-certainty evidence, again limited by imprecision, that quit rates were higher in people randomized to nicotine EC than to non-nicotine EC (RR 1.94, 95% CI 1.21 to 3.13; I2 = 0%; 5 studies, 1447 participants). In absolute terms, this might lead to an additional seven quitters per 100 (95% CI 2 to 16). There was moderate-certainty evidence of no difference in the rate of AEs between these groups (RR 1.01, 95% CI 0.91 to 1.11; I2 = 0%; 3 studies, 601 participants). There was insufficient evidence to determine whether rates of SAEs differed between groups, due to very serious imprecision (RR 1.06, 95% CI 0.47 to 2.38; I2 = 0; 5 studies, 792 participants). Compared to behavioural support only/no support, quit rates were higher for participants randomized to nicotine EC (RR 2.61, 95% CI 1.44 to 4.74; I2 = 0%; 6 studies, 2886 participants). In absolute terms this represents an additional six quitters per 100 (95% CI 2 to 15). However, this finding was of very low certainty, due to issues with imprecision and risk of bias. There was some evidence that non-serious AEs were more common in people randomized to nicotine EC (RR 1.22, 95% CI 1.12 to 1.32; I2 = 41%, low certainty; 4 studies, 765 participants), and again, insufficient evidence to determine whether rates of SAEs differed between groups (RR 1.51, 95% CI 0.70 to 3.24; I2 = 0%; 7 studies, 1303 participants).  Data from non-randomized studies were consistent with RCT data. The most commonly reported AEs were throat/mouth irritation, headache, cough, and nausea, which tended to dissipate with continued use. Very few studies reported data on other outcomes or comparisons, hence evidence for these is limited, with CIs often encompassing clinically significant harm and benefit. AUTHORS' CONCLUSIONS: There is moderate-certainty evidence that ECs with nicotine increase quit rates compared to NRT and compared to ECs without nicotine. Evidence comparing nicotine EC with usual care/no treatment also suggests benefit, but is less certain. More studies are needed to confirm the effect size. Confidence intervals were for the most part wide for data on AEs, SAEs and other safety markers, with no difference in AEs between nicotine and non-nicotine ECs. Overall incidence of SAEs was low across all study arms. We did not detect  evidence of harm from nicotine EC, but longest follow-up was two years and the  number of studies was small. The main limitation of the evidence base remains imprecision due to the small number of RCTs, often with low event rates, but further RCTs are underway. To ensure the review continues to provide up-to-date information to decision-makers, this review is now a living systematic review. We run searches monthly, with the review updated when relevant new evidence becomes available. Please refer to the Cochrane Database of Systematic Reviews for the review's current status.

2.
BMJ ; 374: n1840, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404631

RESUMO

OBJECTIVE: To determine if the characteristics of behavioural weight loss programmes influence the rate of change in weight after the end of the programme. DESIGN: Systematic review and meta-analysis. DATA SOURCES: Trial registries, 11 electronic databases, and forward citation searching (from database inception; latest search December 2019). Randomised trials of behavioural weight loss programmes in adults with overweight or obesity, reporting outcomes at ≥12 months, including at the end of the programme and after the end of the programme. REVIEW METHODS: Studies were screened by two independent reviewers with discrepancies resolved by discussion. 5% of the studies identified in the searches met the inclusion criteria. One reviewer extracted the data and a second reviewer checked the data. Risk of bias was assessed with Cochrane's risk of bias tool (version 1). The rate of change in weight was calculated (kg/month; converted to kg/year for interpretability) after the end of the programme in the intervention versus control groups by a mixed model with a random intercept. Associations between the rate of change in weight and prespecified variables were tested. RESULTS: Data were analysed from 249 trials (n=59 081) with a mean length of follow-up of two years (longest 30 years). 56% of studies (n=140) had an unclear risk of bias, 21% (n=52) a low risk, and 23% (n=57) a high risk of bias. Regain in weight was faster in the intervention versus the no intervention control groups (0.12-0.32 kg/year) but the difference between groups was maintained for at least five years. Each kilogram of weight lost at the end of the programme was associated with faster regain in weight at a rate of 0.13-0.19 kg/year. Financial incentives for weight loss were associated with faster regain in weight at a rate of 1-1.5 kg/year. Compared with programmes with no meal replacements, interventions involving partial meal replacements were associated with faster regain in weight but not after adjustment for weight loss during the programme. Access to the programme outside of the study was associated with slower regain in weight. Programmes where the intensity of the interaction reduced gradually were also associated with slower regain in weight in the multivariable analysis, although the point estimate suggested that the association was small. Other characteristics did not explain the heterogeneity in regain in weight. CONCLUSION: Faster regain in weight after weight loss was associated with greater initial weight loss, but greater initial weight loss was still associated with reduced weight for at least five years after the end of the programme, after which data were limited. Continued availability of the programme to participants outside of the study predicted a slower regain in weight, and provision of financial incentives predicted faster regain in weight; no other clear associations were found. STUDY REGISTRATION: PROSPERO CRD42018105744.


Assuntos
Terapia Comportamental/métodos , Trajetória do Peso do Corpo , Obesidade/terapia , Sobrepeso/terapia , Programas de Redução de Peso/métodos , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/fisiopatologia , Sobrepeso/fisiopatologia , Avaliação de Programas e Projetos de Saúde , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento , Perda de Peso
4.
Cochrane Database Syst Rev ; 4: CD010216, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33913154

RESUMO

BACKGROUND: Electronic cigarettes (ECs) are handheld electronic vaping devices which produce an aerosol formed by heating an e-liquid. Some people who smoke use ECs to stop or reduce smoking, but some organizations, advocacy groups and policymakers have discouraged this, citing lack of evidence of efficacy and safety. People who smoke, healthcare providers and regulators want to know if ECs can help people quit and if they are safe to use for this purpose. This is an update of a review first published in 2014. OBJECTIVES: To examine the effectiveness, tolerability, and safety of using electronic cigarettes (ECs) to help people who smoke achieve long-term smoking abstinence. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group's Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and PsycINFO to 1 February 2021, together with reference-checking and contact with study authors. SELECTION CRITERIA: We included randomized controlled trials (RCTs) and randomized cross-over trials in which people who smoke were randomized to an EC or control condition. We also included uncontrolled intervention studies in which all participants received an EC intervention. To be included, studies had to report abstinence from cigarettes at six months or longer and/or data on adverse events (AEs) or other markers of safety at one week or longer. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methods for screening and data extraction. Our primary outcome measures were abstinence from smoking after at least six months follow-up, adverse events (AEs), and serious adverse events (SAEs). Secondary outcomes included changes in carbon monoxide, blood pressure, heart rate, blood oxygen saturation, lung function, and levels of known carcinogens/toxicants. We used a fixed-effect Mantel-Haenszel model to calculate the risk ratio (RR) with a 95% confidence interval (CI) for dichotomous outcomes. For continuous outcomes, we calculated mean differences. Where appropriate, we pooled data from these studies in meta-analyses. MAIN RESULTS: We included 56 completed studies, representing 12,804 participants, of which 29 were RCTs. Six of the 56 included studies were new to this review update. Of the included studies, we rated five (all contributing to our main comparisons) at low risk of bias overall, 41 at high risk overall (including the 25 non-randomized studies), and the remainder at unclear risk. There was moderate-certainty evidence, limited by imprecision, that quit rates were higher in people randomized to nicotine EC than in those randomized to nicotine replacement therapy (NRT) (risk ratio (RR) 1.69, 95% confidence interval (CI) 1.25 to 2.27; I2 = 0%; 3 studies, 1498 participants). In absolute terms, this might translate to an additional four successful quitters per 100 (95% CI 2 to 8). There was low-certainty evidence (limited by very serious imprecision) that the rate of occurrence of AEs was similar) (RR 0.98, 95% CI 0.80 to 1.19; I2 = 0%; 2 studies, 485 participants). SAEs occurred rarely, with no evidence that their frequency differed between nicotine EC and NRT, but very serious imprecision led to low certainty in this finding (RR 1.37, 95% CI 0.77 to 2.41: I2 = n/a; 2 studies, 727 participants). There was moderate-certainty evidence, again limited by imprecision, that quit rates were higher in people randomized to nicotine EC than to non-nicotine EC (RR 1.70, 95% CI 1.03 to 2.81; I2 = 0%; 4 studies, 1057 participants). In absolute terms, this might again lead to an additional four successful quitters per 100 (95% CI 0 to 11). These trials mainly used older EC with relatively low nicotine delivery. There was moderate-certainty evidence of no difference in the rate of AEs between these groups (RR 1.01, 95% CI 0.91 to 1.11; I2 = 0%; 3 studies, 601 participants). There was insufficient evidence to determine whether rates of SAEs differed between groups, due to very serious imprecision (RR 0.60, 95% CI 0.15 to 2.44; I2 = n/a; 4 studies, 494 participants). Compared to behavioral support only/no support, quit rates were higher for participants randomized to nicotine EC (RR 2.70, 95% CI 1.39 to 5.26; I2 = 0%; 5 studies, 2561 participants). In absolute terms this represents an increase of seven per 100 (95% CI 2 to 17). However, this finding was of very low certainty, due to issues with imprecision and risk of bias. There was no evidence that the rate of SAEs differed, but some evidence that non-serious AEs were more common in people randomized to nicotine EC (AEs: RR 1.22, 95% CI 1.12 to 1.32; I2 = 41%, low certainty; 4 studies, 765 participants; SAEs: RR 1.17, 95% CI 0.33 to 4.09; I2 = 5%; 6 studies, 1011 participants, very low certainty). Data from non-randomized studies were consistent with RCT data. The most commonly reported AEs were throat/mouth irritation, headache, cough, and nausea, which tended to dissipate with continued use. Very few studies reported data on other outcomes or comparisons and hence evidence for these is limited, with confidence intervals often encompassing clinically significant harm and benefit. AUTHORS' CONCLUSIONS: There is moderate-certainty evidence that ECs with nicotine increase quit rates compared to ECs without nicotine and compared to NRT. Evidence comparing nicotine EC with usual care/no treatment also suggests benefit, but is less certain. More studies are needed to confirm the size of effect, particularly when using modern EC products. Confidence intervals were for the most part wide for data on AEs, SAEs and other safety markers, though evidence indicated no difference in AEs between nicotine and non-nicotine ECs. Overall incidence of SAEs was low across all study arms. We did not detect any clear evidence of harm from nicotine EC, but longest follow-up was two years and the overall number of studies was small. The evidence is limited mainly by imprecision due to the small number of RCTs, often with low event rates. Further RCTs are underway. To ensure the review continues to provide up-to-date information, this review is now a living systematic review. We run searches monthly, with the review updated when relevant new evidence becomes available. Please refer to the Cochrane Database of Systematic Reviews for the review's current status.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Nicotina , Agonistas Nicotínicos , Abandono do Hábito de Fumar/métodos , Prevenção do Hábito de Fumar , Viés , Monóxido de Carbono/análise , Estudos de Coortes , Humanos , Pessoa de Meia-Idade , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Avaliação de Resultados em Cuidados de Saúde , Viés de Publicação , Ensaios Clínicos Controlados Aleatórios como Assunto , Fumar/epidemiologia , Abandono do Hábito de Fumar/estatística & dados numéricos , Dispositivos para o Abandono do Uso de Tabaco , Vaping
5.
Cochrane Database Syst Rev ; 10: CD010216, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33052602

RESUMO

BACKGROUND: Electronic cigarettes (ECs) are handheld electronic vaping devices which produce an aerosol formed by heating an e-liquid. People who smoke report using ECs to stop or reduce smoking, but some organisations, advocacy groups and policymakers have discouraged this, citing lack of evidence of efficacy and safety. People who smoke, healthcare providers and regulators want to know if ECs can help people quit and if they are safe to use for this purpose. This review is an update of a review first published in 2014. OBJECTIVES: To evaluate the effect and safety of using electronic cigarettes (ECs) to help people who smoke achieve long-term smoking abstinence. SEARCH METHODS: We searched the Cochrane Tobacco Addiction Group's Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, and PsycINFO for relevant records to January 2020, together with reference-checking and contact with study authors. SELECTION CRITERIA: We included randomized controlled trials (RCTs) and randomized cross-over trials in which people who smoke were randomized to an EC or control condition. We also included uncontrolled intervention studies in which all participants received an EC intervention. To be included, studies had to report abstinence from cigarettes at six months or longer and/or data on adverse events (AEs) or other markers of safety at one week or longer. DATA COLLECTION AND ANALYSIS: We followed standard Cochrane methods for screening and data extraction. Our primary outcome measures were abstinence from smoking after at least six months follow-up, AEs, and serious adverse events (SAEs). Secondary outcomes included changes in carbon monoxide, blood pressure, heart rate, blood oxygen saturation, lung function, and levels of known carcinogens/toxicants. We used a fixed-effect Mantel-Haenszel model to calculate the risk ratio (RR) with a 95% confidence interval (CI) for dichotomous outcomes. For continuous outcomes, we calculated mean differences. Where appropriate, we pooled data from these studies in meta-analyses. MAIN RESULTS: We include 50 completed studies, representing 12,430 participants, of which 26 are RCTs. Thirty-five of the 50 included studies are new to this review update. Of the included studies, we rated four (all which contribute to our main comparisons) at low risk of bias overall, 37 at high risk overall (including the 24 non-randomized studies), and the remainder at unclear risk. There was moderate-certainty evidence, limited by imprecision, that quit rates were higher in people randomized to nicotine EC than in those randomized to nicotine replacement therapy (NRT) (risk ratio (RR) 1.69, 95% confidence interval (CI) 1.25 to 2.27; I2 = 0%; 3 studies, 1498 participants). In absolute terms, this might translate to an additional four successful quitters per 100 (95% CI 2 to 8). There was low-certainty evidence (limited by very serious imprecision) of no difference in the rate of adverse events (AEs) (RR 0.98, 95% CI 0.80 to 1.19; I2 = 0%; 2 studies, 485 participants). SAEs occurred rarely, with no evidence that their frequency differed between nicotine EC and NRT, but very serious imprecision led to low certainty in this finding (RR 1.37, 95% CI 0.77 to 2.41: I2 = n/a; 2 studies, 727 participants). There was moderate-certainty evidence, again limited by imprecision, that quit rates were higher in people randomized to nicotine EC than to non-nicotine EC (RR 1.71, 95% CI 1.00 to 2.92; I2 = 0%; 3 studies, 802 participants). In absolute terms, this might again lead to an additional four successful quitters per 100 (95% CI 0 to 12). These trials used EC with relatively low nicotine delivery. There was low-certainty evidence, limited by very serious imprecision, that there was no difference in the rate of AEs between these groups (RR 1.00, 95% CI 0.73 to 1.36; I2 = 0%; 2 studies, 346 participants). There was insufficient evidence to determine whether rates of SAEs differed between groups, due to very serious imprecision (RR 0.25, 95% CI 0.03 to 2.19; I2 = n/a; 4 studies, 494 participants). Compared to behavioural support only/no support, quit rates were higher for participants randomized to nicotine EC (RR 2.50, 95% CI 1.24 to 5.04; I2 = 0%; 4 studies, 2312 participants). In absolute terms this represents an increase of six per 100 (95% CI 1 to 14). However, this finding was very low-certainty, due to issues with imprecision and risk of bias. There was no evidence that the rate of SAEs varied, but some evidence that non-serious AEs were more common in people randomized to nicotine EC (AEs: RR 1.17, 95% CI 1.04 to 1.31; I2 = 28%; 3 studies, 516 participants; SAEs: RR 1.33, 95% CI 0.25 to 6.96; I2 = 17%; 5 studies, 842 participants). Data from non-randomized studies were consistent with RCT data. The most commonly reported AEs were throat/mouth irritation, headache, cough, and nausea, which tended to dissipate over time with continued use. Very few studies reported data on other outcomes or comparisons and hence evidence for these is limited, with confidence intervals often encompassing clinically significant harm and benefit. AUTHORS' CONCLUSIONS: There is moderate-certainty evidence that ECs with nicotine increase quit rates compared to ECs without nicotine and compared to NRT. Evidence comparing nicotine EC with usual care/no treatment also suggests benefit, but is less certain. More studies are needed to confirm the degree of effect, particularly when using modern EC products. Confidence intervals were wide for data on AEs, SAEs and other safety markers. Overall incidence of SAEs was low across all study arms. We did not detect any clear evidence of harm from nicotine EC, but longest follow-up was two years and the overall number of studies was small. The main limitation of the evidence base remains imprecision due to the small number of RCTs, often with low event rates. Further RCTs are underway. To ensure the review continues to provide up-to-date information for decision-makers, this review is now a living systematic review. We will run searches monthly from December 2020, with the review updated as relevant new evidence becomes available. Please refer to the Cochrane Database of Systematic Reviews for the review's current status.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Nicotina , Agonistas Nicotínicos , Abandono do Hábito de Fumar/métodos , Prevenção do Hábito de Fumar , Viés , Estudos de Coortes , Humanos , Pessoa de Meia-Idade , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Viés de Publicação , Ensaios Clínicos Controlados Aleatórios como Assunto , Fumar/epidemiologia , Abandono do Hábito de Fumar/estatística & dados numéricos , Dispositivos para o Abandono do Uso de Tabaco , Vaping
6.
AIDS Behav ; 24(3): 697-713, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30953304

RESUMO

HIV is more efficiently acquired during receptive anal intercourse (AI) compared to vaginal intercourse (VI) and may contribute substantially to female sex workers' (FSW) high HIV burden. We aim to determine how common and frequent AI is among FSW globally. We searched PubMed, Embase and PsycINFO for studies reporting the proportion of FSW practising AI (prevalence) and/or the number of AI acts (frequency) worldwide from 01/1980 to 10/2018. We assessed the influence of participant and study characteristics on AI prevalence (e.g. continent, study year and interview method) through sub-group analysis. Of 15,830 identified studies, 131 were included. Nearly all (N = 128) reported AI prevalence and few frequency (N = 13), over various recall periods. Most studies used face-to-face interviews (N = 111). Pooled prevalences varied little by recall period (lifetime: 15.7% 95%CI 12.2-19.3%, N = 30, I2 = 99%; past month: 16.2% 95%CI 10.8-21.6%, N = 18, I2 = 99%). The pooled proportion of FSW reporting < 100% condom use tended to be non-significantly higher during AI compared to during VI (e.g. any unprotected VI: 19.1% 95%CI 1.7-36.4, N = 5 and any unprotected AI: 46.4% 95%CI 9.1-83.6, N = 5 in the past week). Across all study participants, between 2.4 and 15.9% (N = 6) of all intercourse acts (AI and VI) were anal. Neither AI prevalence nor frequency varied substantially by any participant or study characteristics. Although varied, AI among FSW is generally common, inconsistently protected with condoms and practiced sufficiently frequently to contribute substantially to HIV acquisition in this risk group. Interventions to address barriers to condom use are needed.


Assuntos
Canal Anal , Preservativos/estatística & dados numéricos , Infecções por HIV/transmissão , Profissionais do Sexo/estatística & dados numéricos , Comportamento Sexual/estatística & dados numéricos , Coito , Feminino , Infecções por HIV/epidemiologia , Humanos , Prevalência , Fatores de Risco , Sexo Seguro , Vagina
7.
Contraception ; 95(4): 424-430, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28038949

RESUMO

OBJECTIVE: Some observational studies have suggested an association between the use of hormonal contraceptives (HC) and HIV acquisition. One major concern is that differential misreporting of sexual behavior between HC users and nonusers may generate artificially inflated risk estimates. STUDY DESIGN: We developed an individual-based model that simulates the South African HIV serodiscordant couples analyzed for HC-HIV risk by Heffron et al. (2012). We varied the pattern of misreporting condom use between HC users and nonusers and reproduced the trial data under the assumption that HC use is not associated with HIV risk. The simulated data were analyzed using Cox proportional hazards models, adjusting for the reported level of condom use. RESULTS: If HC users overreport condom use more than nonusers, an apparent excess risk could be observed even without any biological effect of HC on HIV acquisition. With 45% overreporting by HC users (i.e., 9 out of every 20 sex acts reported with condoms are actually unprotected) and accurate condom reporting by nonusers, a true null effect can be inflated to give an observed hazard ratio (HR̂) of 2.0. In a different population with lower overall reported condom use, artificially high HR̂s can only be generated if non-HC users underreport condom use. CONCLUSION: Differential condom misreporting can theoretically produce inflated HR̂ values for an association between HC and HIV even without a true association. However, to produce a doubling of HIV risk that is entirely spurious requires substantially different levels of misreporting among HC users and nonusers, which may be unrealistic. IMPLICATIONS: Considerably differential amounts of condom use misreporting by HC users and nonusers would be needed to produce entirely spurious observed levels of excess HIV acquisition risk among HC users when there is actually no true association.


Assuntos
Preservativos/estatística & dados numéricos , Comportamento Contraceptivo/estatística & dados numéricos , Anticoncepção/métodos , Anticoncepcionais Orais Hormonais/administração & dosagem , Infecções por HIV/transmissão , Pesquisa Biomédica/métodos , Coito , Feminino , Infecções por HIV/epidemiologia , Seleção por Sorologia para HIV , Humanos , Masculino , Estudos Observacionais como Assunto , Modelos de Riscos Proporcionais , Medição de Risco/métodos
8.
AIDS Behav ; 19(7): 1338-60, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25618257

RESUMO

We aim to assess if heterosexual anal intercourse (AI) is commonly practiced and how frequently it is practiced by young people. We searched PubMed for articles published 1975 to July 2014 reporting data on the proportion of young people (mean age <25) practicing heterosexual AI (AI prevalence) and on number of AI acts (AI frequency). Stratified random-effects meta-analysis and meta-regression were used to produce summary estimates and assess the influence of participant and study characteristics on AI prevalence. Eighty-three and thirteen of the 136 included articles reported data on lifetime AI prevalence and monthly AI frequency, respectively. Estimates were heterogenous. Overall summary estimates of lifetime AI prevalence were 22 % (95 % confidence interval 20-24) among sexually active young people, with no statistically significant differences by gender, continent or age. Prevalence increased significantly with confidentiality of interview method and, among males and in Europe, by survey year. Prevalence did not significantly differ by recall period. An estimated 3-24 % of all reported sex acts were AI. Reported heterosexual AI is common but variable among young people worldwide. To fully understand its impact on STI spread, more and better quality data on frequency of unprotected AI, and trends over time are required.


Assuntos
Heterossexualidade , Comportamento Sexual/estatística & dados numéricos , Adolescente , Feminino , Infecções por HIV/epidemiologia , Humanos , Masculino , Prevalência , Assunção de Riscos , Adulto Jovem
9.
Am J Reprod Immunol ; 69 Suppl 1: 95-105, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23279040

RESUMO

Heterosexual anal intercourse confers a much greater risk of HIV transmission than vaginal intercourse, yet its contribution to heterosexual HIV epidemics has been under-researched. In this article we review the current state of knowledge of heterosexual anal intercourse practice worldwide and identify the information required to assess its role in HIV transmission within heterosexual populations, including input measures required to inform mathematical models. We then discuss the evidence relating anal intercourse and HIV with sexual violence.


Assuntos
Coito , Infecções por HIV/epidemiologia , Infecções por HIV/transmissão , Heterossexualidade , Modelos Biológicos , Delitos Sexuais , Feminino , Humanos , Masculino
10.
AIDS ; 27(1): 105-113, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23014519

RESUMO

BACKGROUND: Some, but not all, observational studies have suggested an increase in the risk of HIV acquisition for women using injectable hormonal contraception (IHC). METHODS: We used country-level data to explore the effects of reducing IHC use on the number of HIV infections, the number of live births and the resulting net consequences on AIDS deaths and maternal mortality for each country. RESULTS: High IHC use coincides with high HIV incidence primarily in southern and eastern Africa. If IHC increases the risk of HIV acquisition, this could generate 27 000-130 000 infections per year globally, 87-88% of which occur in this region. Reducing IHC use could result in fewer HIV infections but also a substantial increase in live births and maternal mortality in countries with high IHC use, high birth rates and high maternal mortality: mainly southern and eastern Africa, South-East Asia, and Central and South America. For most countries, the net impact of reducing IHC use on maternal and AIDS-related deaths is dependent on the magnitude of the assumed IHC-HIV interaction. CONCLUSIONS: If IHC use increases HIV acquisition risk, reducing IHC could reduce new HIV infections; however, this must be balanced against other important consequences, including unintended pregnancy, which impacts maternal and infant mortality. Unless the true effect size approaches a relative risk of 2.19, it is unlikely that reductions in IHC could result in public health benefit, with the possible exception of those countries in southern Africa with the largest HIV epidemics.


Assuntos
Preservativos/estatística & dados numéricos , Anticoncepcionais/administração & dosagem , Infecções por HIV/epidemiologia , Infecções por HIV/prevenção & controle , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Modelos Estatísticos , Adolescente , Adulto , África Oriental/epidemiologia , África Austral/epidemiologia , Serviços de Planejamento Familiar , Feminino , Humanos , Transmissão Vertical de Doenças Infecciosas/estatística & dados numéricos , Injeções , Pessoa de Meia-Idade , Gravidez , Prevalência , Fatores de Risco , América do Sul/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...