Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Mais filtros

Base de dados
Intervalo de ano de publicação
Environ Microbiol ; 21(3): 959-971, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30537399


The fungal pathogen Sporisorium scitamineum causes sugarcane smut disease. The formation and growth of dikaryotic hypha after sexual mating is critical for S. scitamineum pathogenicity, however regulation of S. scitimineum mating has not been studied in detail. We identified and characterized the core components of the conserved cAMP/PKA pathway in S. scitamineum by reverse genetics. Our results showed that cAMP/PKA signalling pathway is essential for proper mating and filamentation, and thus critical for S. scitamineum virulence. We further demonstrated that an elevated intracellular ROS (reactive oxygen species) level promotes S. scitamineum mating-filamentation, via transcriptional regulation of ROS catabolic enzymes, and is under regulation of the cAMP/PKA signalling pathway. Furthermore, we found that fungal cAMP/PKA signalling pathway is also involved in regulation of host ROS response. Overall, our work displayed a positive role of elevated intracellular ROS in fungal differentiation and virulence.

BMC Genomics ; 17: 354, 2016 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-27185248


BACKGROUND: Sporisorium scitamineum causes the sugarcane smut disease, one of the most serious constraints to global sugarcane production. S. scitamineum possesses a sexual mating system composed of two mating-type loci, a and b locus. We previously identified and deleted the b locus in S. scitamineum, and found that the resultant SsΔMAT-1b mutant was defective in mating and pathogenicity. RESULTS: To further understand the function of b-mating locus, we carried out transcriptome analysis by comparing the transcripts of the mutant strain SsΔMAT-1b, from which the SsbE1 and SsbW1 homeodomain transcription factors have previously been deleted, with those from the wild-type MAT-1 strain. Also the transcripts from SsΔMAT-1b X MAT-2 were compared with those from wild-type MAT-1 X MAT-2 mating. A total of 209 genes were up-regulated (p < 0.05) in the SsΔMAT-1b mutant, compared to the wild-type MAT-1 strain, while 148 genes down-regulated (p < 0.05). In the mixture, 120 genes were up-regulated (p < 0.05) in SsΔMAT-1b X MAT-2, which failed to mate, compared to the wild-type MAT-1 X MAT-2 mating, and 271 genes down-regulated (p < 0.05). By comparing the up- and down-regulated genes in these two sets, it was found that 15 up-regulated and 37 down-regulated genes were common in non-mating haploid and mating mixture, which indeed could be genes regulated by b-locus. Furthermore, GO and KEGG enrichment analysis suggested that carbon metabolism pathway and stress response mediated by Hog1 MAPK signaling pathway were altered in the non-mating sets. CONCLUSIONS: Experimental validation results indicate that the bE/bW heterodimeric transcriptional factor, encoded by the b-locus, could regulate S. scitamineum sexual mating and/or filamentous growth via modulating glucose metabolism and Hog1-mediating oxidative response.

Basidiomycota/fisiologia , Meio Ambiente , Perfilação da Expressão Gênica , Reprodução Assexuada/genética , Transcriptoma , Metabolismo dos Carboidratos/genética , Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Regulação Fúngica da Expressão Gênica , Genes Fúngicos Tipo Acasalamento , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Anotação de Sequência Molecular
Fungal Genet Biol ; 86: 1-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26563415


Sporisorium scitamineum is the causal agent of sugarcane smut, which is one of the most serious constraints to global sugarcane production. S. scitamineum and Ustilago maydis are two closely related smut fungi, that are predicted to harbor similar sexual mating processes/system. To elucidate the molecular basis of sexual mating in S. scitamineum, we identified and deleted the ortholog of mating-specific U. maydis locus b, in S. scitamineum. The resultant b-deletion mutant was defective in mating and pathogenicity in S. scitamineum. Furthermore, a functional b locus heterodimer could trigger filamentous growth without mating in S. scitamineum, and functionally replace the b locus in U. maydis in terms of triggering aerial filament production and forming solopathogenic strains, which do not require sexual mating prior to pathogenicity on the host plants.

Genes Fúngicos Tipo Acasalamento , Saccharum/microbiologia , Ustilaginales/genética , Ustilaginales/patogenicidade , Sequência de Aminoácidos , Dados de Sequência Molecular , Doenças das Plantas/microbiologia , Genética Reversa , Ustilaginales/crescimento & desenvolvimento , Ustilago/genética , Ustilago/patogenicidade , Virulência