Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Pharmacogn Mag ; 14(54): 149-154, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29720823


Background: Sophora tonkinensis Gapnep. is an important medical plant in China. Early researches of S. tonkinensis were focused on rapid propagation and quality analysis of in vitro tissue culture plantlet, and still no research focuses on the plant breeding of and there were no excellent varieties for artificial cultivation of S. tonkinensis. Objective: To set up a method to generate and select the best varieties of S. tonkinensis by polyploid breeding after induction by colchicine treatment. Materials and Methods: The adventitious buds were submerged in different concentrations of aqueous colchicine solution for different lengths of time to induce polyploidy in the plants, and the induced buds were identified by root-tip chromosome determination and leaf characteristics comparison. The contents of matrine and oxymatrine of radix ex rhizoma in 13 selected tetraploid lines were collected after 90 days in vitro rooting culture and were evaluated to provide evidence of good qualities of tetraploid S. tonkinensis. Results: The results showed that the highest percentage of tetraploid induction was 23.33% and occurred in the 0.2% (w/v) colchicine treatment for 30 h. Fifty lines of tetraploid plants were obtained and 12 of the 13 selected tetraploid lines exhibited higher productivity of total contents of matrine and oxymatrine when compared to controls. Conclusion: The data demonstrate that polyploidy induction can be beneficial for improving the medicinal value of S. tonkinensis. SUMMARY: Colchicine has a good in vitro induction effect on the tetraploid plants of Sophora tonkinensisThe leaf indices and stomatal apparatus of tetraploid plants were slightly larger than diploid plantsThe total content of matrine and oxymatrine of some tetraploid lines for 90-day-old in vitro rooting culture was higher than the diploid. Abbreviations used: MS medium: Murashige and Skoog medium; BAP: 6-benzylaminopurine; NAA: A-naphthaleneacetic acid; IAA: Indole-3-acetic acid; KT: Kinetin; IBA: Indole-3-butyric acid; ABT: Rooting power.

Yao Xue Xue Bao ; 47(6): 791-6, 2012 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-22919729


Ibuprofen/ethyl-cellulose (EC)-polyvinylpyrrolidone (PVP) sustained-release composite particles were prepared by using supercritical CO2 anti-solvent technology. With drug loading as the main evaluation index, orthogonal experimental design was used to optimize the preparation process of EC-PVP/ibuprofen composite particles. The experiments such as encapsulation efficiency, particle size distribution, electron microscope analysis, infrared spectrum (IR), differential scanning calorimetry (DSC) and in vitro dissolution were used to analyze the optimal process combination. The orthogonal experimental optimization process conditions were set as follows: crystallization temperature 40 degrees C, crystallization pressure 12 MPa, PVP concentration 4 mgmL(-1), and CO2 velocity 3.5 Lmin(-1). Under the optimal conditions, the drug loading and encapsulation efficiency of ibuprofen/EC-PVP composite particles were 12.14% and 52.21%, and the average particle size of the particles was 27.621 microm. IR and DSC analysis showed that PVP might complex with EC. The experiments of in vitro dissolution showed that ibuprofen/EC-PVP composite particles had good sustained-release effect. Experiment results showed that, ibuprofen/EC-PVP sustained-release composite particles can be prepared by supercritical CO2 anti-solvent technology.

Celulose/análogos & derivados , Composição de Medicamentos , Ibuprofeno/administração & dosagem , Povidona/administração & dosagem , Tecnologia Farmacêutica/métodos , Varredura Diferencial de Calorimetria , Dióxido de Carbono/química , Celulose/administração & dosagem , Celulose/química , Cristalização , Preparações de Ação Retardada , Portadores de Fármacos , Ibuprofeno/química , Microscopia Confocal , Tamanho da Partícula , Povidona/química , Solubilidade , Espectrofotometria Infravermelho