Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 807
Filtrar
1.
Ecotoxicol Environ Saf ; 223: 112559, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34333384

RESUMO

Phthalic acid esters (PAEs) are a group of widespread persistent organic pollutants in the environment. Though the harmful effect of PAEs including activity inhibition of superoxide dismutase (SOD) to arouse oxidative stress were well documented, the deep insights into mechanisms that are relevant with SOD activity are still lacking. By 7d-cultivation of Eisenia fetida in artificially-polluted soil, the different active responses of SOD in earthworm were shown to PAE congeners. Despite the less bioaccumulation and bioavailability, the di-butyl phthalate (DBP) etc. structurally coupled with longer ester-chains appeared more effective to trigger the up-regulation and then the slight decline of SOD activity. Given the remarkable biotransformation especially for short-chain PAEs, the SOD activity response in earthworm should be regarded as joint effect with their metabolites, e.g. monophthalates (MAEs) and phthalic acid (PA). The in vitro SOD activity was shown with the obvious inhibition of 21.31% by DBP, 88.93% by MBP, and 58.57% by PA respectively when the concentrations were elevated up to 0.03 mM. The SOD activity inhibition confirmed the molecular binding with pollutants as an essential event besides the biological regulation for activity. The binding interaction was thermodynamically exothermic, spontaneous and strengthened primarily by Van der Waals force and hydrogen bonds, and was spectrally diagnosed with the conformational changes including diminution of α-helix content and spatial reorientation of fluorophore tryptophan. As coherently illustrated with the larger fluorescence quenching constants (3.65*104-4.47*104/mol) than DBP, the metabolites should be the priority concern due to stronger activity inhibition and toxicological risks.

2.
Elife ; 102021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34227939

RESUMO

The normal wound healing process is characterised by proteolytic events, whereas infection results in dysfunctional activations by endogenous and bacterial proteases. Peptides, downstream reporters of these proteolytic actions, could therefore serve as a promising tool for diagnosis of wounds. Using mass-spectrometry analyses, we here for the first time characterise the peptidome of human wound fluids. Sterile post-surgical wound fluids were found to contain a high degree of peptides in comparison to human plasma. Analyses of the peptidome from uninfected healing wounds and Staphylococcus aureus -infected wounds identify unique peptide patterns of various proteins, including coagulation and complement factors, proteases, and antiproteinases. Together, the work defines a workflow for analysis of peptides derived from wound fluids and demonstrates a proof-of-concept that such fluids can be used for analysis of qualitative differences of peptide patterns from larger patient cohorts, providing potential biomarkers for wound healing and infection.

3.
Anal Chem ; 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34324804

RESUMO

Au nanoparticles (Au NPs) can be self-assembled in a bottom-up orderly manner at the oil-water interface, which is widely used as SERS platforms, but the stability of the Au NP interface needs to be improved due to shaking or shifting and the Brownian motion. The DNA structure with unique sequence specificity, excellent programmability, and flexible end-group modification capability owns good potential to precisely control the plasmonic structure's distance. In this study, a large area of the SERS substrate is obtained from the DNA structure-stabilized self-assembled ordered Au NPs on the cyclohexane-water interface. Combining with the exonuclease III (exo III)-assisted DNA recycling amplification strategy, we construct a liquid-phase SERS biosensor for efficient detection of microRNA 155 (miRNA 155). Compared with the traditional randomly assembled Au NPs on the two-phase interface, the SERS signal is significantly enhanced and more stable. The detection limit of the SERS biosensor for miRNA 155 reached 1.45 fmol/L, which has a very wide linear range (100 fmol/L-5 nmol/L). This work gives an efficient approach to stabilize the self-assembly Au NPs on the liquid-liquid interface, which can broaden the application of SERS analysis.

4.
Oncol Rep ; 46(2)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34278503

RESUMO

Non­small cell lung cancer (NSCLC), which accounts for ~85% of all lung cancer cases, is commonly diagnosed at an advanced stage and has a high patient mortality rate. Despite the increasing availability of treatment strategies, the prognosis of patients with NSCLC remains poor, with a low 5­year survival rate. This poor prognosis may be associated with the tumor heterogeneity of NSCLC, as well as its acquisition and intrinsic resistance to therapeutic drugs. It has been suggested that combination therapy with telomerase inhibition may be an effective strategy for the treatment of drug­sensitive and drug­resistant types of cancer. Telomerase is the key enzyme for cell survival, and ~90% of human cancers maintain telomeres by activating telomerase, which is driven by the upregulation of telomerase reverse transcriptase (TERT). Several mechanisms of telomerase reactivation have been described in a variety of cancer types, including TERT promoter mutation, epigenetic modifications via a TERT promoter, TERT amplification, and TERT rearrangement. The aim of the present study was to comprehensively review telomerase activity and its association with the clinical characteristics and prognosis of NSCLC, as well as analyze the potential mechanism via which TERT activates telomerase and determine its potential clinical application in NSCLC. More importantly, current treatment strategies targeting TERT in NSCLC have been summarized with the aim to promote discovery of novel strategies for the future treatment of NSCLC.

6.
J Environ Manage ; 294: 112998, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34126539

RESUMO

Either biosurfactants or agricultural wastes were frequently used to enhance degradation of PAHs in soil, but there is still not clear whether combined application of biosurfactants and agricultural wastes is more efficient. Rhamnolipid and/or agricultural wastes (mushroom substrate or maize straw) were mixed with PAHs-contaminated soil to explore their performances in the removal of PAHs. The present study showed that rhamnolipid combined with mushroom substrate (MR, 30.36%) or maize straw (YR, 30.76%) significantly enhanced the degradation of soil PAHs compared with single application of mushroom substrate (M, 25.53%) or maize straw (Y, 25.77%) or no addition (19.38%). The addition of agricultural wastes significantly (p < 0.001) enhanced concentration of dissolved organic carbon (DOC) in soil. The combined application obviously improved the bioavailability of PAHs in soils and exhibited synergistic effects on concentration of organic acid-soluble HMW PAHs and the degradation rate of total HMW PAHs. Meanwhile, the combined application significantly (p < 0.01) enhanced the abundance of dominant bacterial and fungal genera being connected with PAHs degradation. The removal rate of PAHs was positively correlated with the dominant genera of bacteria (r = 0.539-0.886, p < 0.05) and fungi (r = 0.526-0.867, p < 0.05) related to PAHs degradation. Overall, the combined application exhibited a better performance in the removal of PAHs in contaminated soil via increasing their bioavailability and changing microbial communities in soil.


Assuntos
Microbiota , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Biodegradação Ambiental , Disponibilidade Biológica , Glicolipídeos , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Microbiologia do Solo , Poluentes do Solo/análise
7.
Nat Hum Behav ; 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158650

RESUMO

COVID-19 vaccination is being conducted in over 200 countries and regions to control SARS-CoV-2 transmission and return to a pre-pandemic lifestyle. However, understanding when non-pharmaceutical interventions (NPIs) can be lifted as immunity builds up remains a key question for policy makers. To address this, we built a data-driven model of SARS-CoV-2 transmission for China. We estimated that, to prevent the escalation of local outbreaks to widespread epidemics, stringent NPIs need to remain in place at least one year after the start of vaccination. Should NPIs alone be capable of keeping the reproduction number (Rt) around 1.3, the synergetic effect of NPIs and vaccination could reduce the COVID-19 burden by up to 99% and bring Rt below the epidemic threshold in about 9 months. Maintaining strict NPIs throughout 2021 is of paramount importance to reduce COVID-19 burden while vaccines are distributed to the population, especially in large populations with little natural immunity.

8.
Artigo em Inglês | MEDLINE | ID: mdl-34160750

RESUMO

The cholinesterase-based spectrophotometric assay, also called enzyme inhibition method, is a good choice for rapid detection of organophosphate pesticides (OPs) and carbamate pesticides (CPs). Obviously, the cholinesterase is the core reagent in enzyme inhibition method. In our previous work, a recombinant acetylcholinesterase 2 from Bombyx mori (rBmAChE2) was expressed in yeast successfully and exhibited great sensitivity. However, the yield of rBmAChE2 is not desirable. In this study, a codon optimization strategy was employed to enhance the yield of rBmAChE2 in Pichia pastoris GS115. Results showed that by replacing 6 key rare codons and increasing the percentage of bases G and C up to 46.85%, codon adaptation index (CAI) of Bombyx mori acetylcholinesterase 2 (bmace2) gene was improved from 0.70 to 0.81. After being transformed into Pichia pastoris GS115 via electroporation, the expression transformant can produce 139.7 U/mL secretory codon-optimized rBmAChE2 (opt-rBmAChE2) in the culture supernatant, 3.62 times higher than that of strain bearing the wild-type bmace2 gene. Meanwhile, opt-rBmAChE2 displayed on the yeast surface was up to 2280.02 U/g, 2.8 times higher than wild-type displayed rBmAChE2. In addition, either secretory or surface-displayed opt-rBmAChE2 maintained the similar sensitivities to the wild-type rBmAChE2 for tested inhibitors. Furthermore, the detection limits of the opt-rBmAChE2-based enzyme inhibition method for 10 kinds of OPs or CPs (0.01-2.69 mg/kg) were lower than most of the indexes present in current standard method (GB/T 5009.199-2003) or the maximum residue limits (GB 2763-2019) in China. The results might contribute to the utilization of rBmAChE2 for pesticide residue screening detection in practice.

9.
J Neurochem ; 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34169527

RESUMO

Autism Spectrum Disorder (ASD) is a neurodevelopmental disease originating from combined genetic and environmental factors. Post-mortem human studies and some animal ASD models have shown brain neuroinflammation, oxidative stress and changes in blood brain barrier (BBB) integrity. However, the signaling pathways leading to these inflammatory findings and vascular alterations are currently unclear. The BBB plays a critical role in controlling brain homeostasis and immune response. Its dysfunction can result from developmental genetic abnormalities or from neuroinflammatory processes. In this review we explore the role of the Sonic Hedgehog/Wingless-related integration site (Shh/Wnt) pathways in neurodevelopment, neuroinflammation, and BBB development. The balance between Wnt-ß-catenin and Shh pathways controls angiogenesis, barriergenesis, neurodevelopment, central nervous system (CNS) morphogenesis and neuronal guidance. These interactions are critical to maintain BBB function in the mature CNS to prevent influx of pathogens and inflammatory cells. Genetic mutations of key components of these pathways have been identified in ASD patients and animal models which correlate with severity of ASD symptoms. Disruption of the Shh/Wnt crosstalk may therefore compromise BBB development and function. In turn, impaired Shh signaling and glial activation may cause neuroinflammation that could disrupt the BBB. Elucidating how ASD-related mutations of Shh/Wnt signaling could cause BBB leaks and neuroinflammation will contribute to our understanding of the role of their interactions in ASD pathophysiology. These observations may provide novel targeted therapeutic strategies to prevent or to alleviate ASD symptoms while preserving normal developmental processes.

10.
Cell Res ; 31(8): 836-846, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34135479

RESUMO

Severe COVID-19 disease caused by SARS-CoV-2 is frequently accompanied by dysfunction of the lungs and extrapulmonary organs. However, the organotropism of SARS-CoV-2 and the port of virus entry for systemic dissemination remain largely unknown. We profiled 26 COVID-19 autopsy cases from four cohorts in Wuhan, China, and determined the systemic distribution of SARS-CoV-2. SARS-CoV-2 was detected in the lungs and multiple extrapulmonary organs of critically ill COVID-19 patients up to 67 days after symptom onset. Based on organotropism and pathological features of the patients, COVID-19 was divided into viral intrapulmonary and systemic subtypes. In patients with systemic viral distribution, SARS-CoV-2 was detected in monocytes, macrophages, and vascular endothelia at blood-air barrier, blood-testis barrier, and filtration barrier. Critically ill patients with long disease duration showed decreased pulmonary cell proliferation, reduced viral RNA, and marked fibrosis in the lungs. Permanent SARS-CoV-2 presence and tissue injuries in the lungs and extrapulmonary organs suggest direct viral invasion as a mechanism of pathogenicity in critically ill patients. SARS-CoV-2 may hijack monocytes, macrophages, and vascular endothelia at physiological barriers as the ports of entry for systemic dissemination. Our study thus delineates systemic pathological features of SARS-CoV-2 infection, which sheds light on the development of novel COVID-19 treatment.

12.
Biomed Pharmacother ; 140: 111689, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34004510

RESUMO

Vascular smooth muscle cell (VSMC) phenotypic switch plays an essential role in the pathogenesis of hypertension. Mitochondrial dynamics, such as mitochondrial fission, can also contribute to VSMC phenotypic switch. Whether mitochondrial fission act as a novel target for anti-hypertensive drug development remains unknown. In the present study, we confirmed that angiotensin II (AngII) rapidly and continuously induced mitochondrial fission in VSMCs. We also detected the phosphorylation status of dynamin-related protein-1 (Drp1), a key protein involved in mitochondrial fission, at Ser616 site; and observed Drp1 mitochondrial translocation in VSMCs or arteries of AngII-induced hypertensive mice. The Drp1 inhibitor mitochondrial division inhibitor-1 (Mdivi-1) dramatically reversed AngII-induced Drp1 phosphorylation, mitochondrial fission, and reactive oxidative species generation. Treatment with Mdivi-1 (20 mg/kg/every other day) significantly attenuated AngII-induced hypertension (22 mmHg), arterial remodeling, and cardiac hypertrophy, in part by preventing VSMC phenotypic switch. In addition, Mdivi-1 treatment was not associated with liver or renal functional injury. Collectively, these results indicate that Mdivi-1 inhibited mitochondrial fission, recovered mitochondrial activity, and prevented AngII-induced VSMC phenotypic switch, resulting in reduced hypertension.


Assuntos
Angiotensina II/farmacologia , Hipertensão/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Quinazolinonas/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Células Cultivadas , Dinaminas/metabolismo , Hipertensão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
13.
Gut ; 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006584

RESUMO

OBJECTIVE: Programmed death 1 and its ligand 1 (PD-1/PD-L1) immunotherapy is promising for late-stage lung cancer treatment, however, the response rate needs to be improved. Gut microbiota plays a crucial role in immunotherapy sensitisation and Panax ginseng has been shown to possess immunomodulatory potential. In this study, we aimed to investigate whether the combination treatment of ginseng polysaccharides (GPs) and αPD-1 monoclonal antibody (mAb) could sensitise the response by modulating gut microbiota. DESIGN: Syngeneic mouse models were administered GPs and αPD-1 mAb, the sensitising antitumour effects of the combination therapy on gut microbiota were assessed by faecal microbiota transplantation (FMT) and 16S PacBio single-molecule real-time (SMRT) sequencing. To assess the immune-related metabolites, metabolomics analysis of the plasma samples was performed. RESULTS: We found GPs increased the antitumour response to αPD-1 mAb by increasing the microbial metabolites valeric acid and decreasing L-kynurenine, as well as the ratio of Kyn/Trp, which contributed to the suppression of regulatory T cells and induction of Teff cells after combination treatment. Besides, the microbial analysis indicated that the abundance of Parabacteroides distasonis and Bacteroides vulgatus was higher in responders to anti-PD-1 blockade than non-responders in the clinic. Furthermore, the combination therapy sensitised the response to PD-1 inhibitor in the mice receiving microbes by FMT from six non-responders by reshaping the gut microbiota from non-responders towards that of responders. CONCLUSION: Our results demonstrate that GPs combined with αPD-1 mAb may be a new strategy to sensitise non-small cell lung cancer patients to anti-PD-1 immunotherapy. The gut microbiota can be used as a novel biomarker to predict the response to anti-PD-1 immunotherapy.

14.
Circ Cardiovasc Qual Outcomes ; 14(5): e007098, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34003685

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has impacted clinical care worldwide. Evidence of how this health crisis affected common conditions like blood pressure (BP) control is uncertain. METHODS: We used longitudinal BP data from an ongoing randomized clinical trial to examine variations in home BP monitored via a smartphone-based application (app) in a total of 7394 elderly patients with hypertension aged 60 to 80 years stratified by their location in Wuhan (n=283) compared with other provinces of China (n=7111). Change in morning systolic BP (SBP) was analyzed for 5 30-day phases during the pandemic, including preepidemic (October 21 to November 20, 2019), incubation (November 21 to December 20, 2019), developing (December 21, 2019 to January 20, 2020), outbreak (January 21 to February 20, 2020), and plateau (February 21 to March 21, 2020). RESULTS: Compared with non-Wuhan areas of China, average morning SBP (adjusted for age, sex, body mass index) in Wuhan patients was significantly higher during the epidemic growth phases, which returned to normal at the plateau. Between-group differences in ΔSBP were +2.5, +3.0, and +2.1 mm Hg at the incubation, developing, and outbreak phases of COVID-19 (P<0.001), respectively. Sensitivity analysis showed a similar trend in trajectory pattern of SBP in both the intensive and standard BP control groups of the trial. Patients in Wuhan also had an increased regimen change in antihypertensive drugs during the outbreak compared with non-Wuhan patients. Expectedly, Wuhan patients were more likely to check their BP via the app, while doctors were less likely to monitor the app for BP control during the pandemic. CONCLUSIONS: Our data demonstrate that the COVID-19 pandemic was associated with a short-term increase in morning SBP among elderly patients with hypertension in Wuhan but not other parts of China. Further study will be needed to understand if these findings extended to other parts of the world substantially affected by the virus. Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT03015311.


Assuntos
Determinação da Pressão Arterial , COVID-19/epidemiologia , Hipertensão/diagnóstico , Hipertensão/fisiopatologia , Smartphone , Idoso , Idoso de 80 Anos ou mais , Anti-Hipertensivos/uso terapêutico , China , Feminino , Humanos , Hipertensão/terapia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Autocuidado
15.
Br J Pharmacol ; 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33959955

RESUMO

BACKGROUND AND PURPOSE: Macrophages regulate iron homeostasis in the liver and play important role in hepatic ischaemia/reperfusion (I/R) injury. This study investigates the role of macrophages in iron overload-related hepatocyte damage during liver I/R. EXPERIMENTAL APPROACH: Liver biopsies from patients undergoing partial hepatectomy with or without hepatic portal occlusion were recruited and markers of hepatocyte cell death and macrophage extracellular traps (METs) were detected. A murine hepatic I/R model was also established in high-iron diet-fed mice. Ferrostatin-1 and deferoxamine were administered to investigate the role of ferroptosis in hepatic I/R injury. The macrophage inhibitor liposome-encapsulated clodronate was used to investigate the interaction between macrophages and ferroptosis. AML12 hepatocytes and RAW264.7 macrophages were co-cultured in vitro. An inhibitor of macrophage extracellular traps was used to evaluate the role and mechanism of these traps and ferroptosis in hepatic I/R injury. KEY RESULTS: Hepatocyte macrophage extracellular trap formation and ferroptosis were greater in patients who underwent hepatectomy with hepatic portal occlusion and in mice subjected to hepatic I/R. Macrophage extracellular traps increased when macrophages were subjected to hypoxia/reoxygenation and when they were co-cultured with hepatocytes. Ferroptosis increased and post-hypoxic hepatocyte survival decreased, which were reversed by inhibition of macrophage extracellular traps. Ferroptosis inhibition attenuated post-ischaemic liver damage. Moreover, iron overload induced hepatic ferroptosis and exacerbated post-ischaemic liver damage, which were reversed by the iron chelator. CONCLUSION AND IMPLICATIONS: Macrophage extracellular traps are in volved in regulating ferroptosis highlighting the therapeutic potential of macrophage extracellular traps and ferroptosis inhibition in reducing liver I/R injury.

16.
Adv Mater ; 33(24): e2008171, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33963781

RESUMO

Single-crystalline silicon (sc-Si) is the dominant semiconductor material for the modern electronics industry. Despite their excellent photoelectric and electronic properties, the rigidity, brittleness, and nontransparency of commonly used silicon wafers limit their application in transparent flexible optoelectronics. In this study, a new type of Si microstructure, named single-crystalline Si frameworks (sc-SiFs), is developed, through a combination of wet-etching and microfabrication technologies. The sc-SiFs are self-supported, flexible, lightweight, tailorable, and highly transparent. They can withstand a small bending radius of less than 0.5 mm and have a transparency of up to 96% in all wavelength ranges, owing to the hollowed-out framework structures. Thus, the sc-SiFs provide a new platform for high-performance transparent flexible optoelectronics. Taking transparent flexible photodetectors (TFPDs) as an example, substrate-free and self-driven TFPDs are achieved based on the sc-SiFs. The devices exhibit superior performance compared to other reported TFPDs and reveal the great potential for integrated optoelectronic applications. The development of sc-SiFs paves the way toward the fabrication of high-performance transparent flexible devices for a host of applications, including e-skins, the Internet of Things, transparent flexible displays, and artificial visual cortexes.

17.
Br J Haematol ; 194(1): 111-119, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33942291

RESUMO

We constructed a prognostic score for persons with diffuse large B-cell lymphoma (DLBCL) based on infiltrating immune cells. Data of 956 consecutive subjects were retrieved from the Gene Expression Omnibus database and assigned to training (GSE10846, n = 305) or validation (GSE87371 n = 206 and GSE117556 n = 445 combined) cohorts. Proportions of non-lymphoma cells in the sample were inferred using the ESTIMATE algorithm. An immune risk score was constructed comprised of eight types of non-lymphoma immune cells calculated using the CIBERSORT algorithm. Five-year survival of subjects with an immune risk score ≤ 0·45 in the training cohort was better than that of subjects with a score > 0·45 (hazard ratio [HR] = 3·99; 95% confidence interval [CI] = 2·74, 5·82; P < 0·001). HR in the validation cohort was HR = 2·17 (1·47, 3·21; P < 0·001). Enrichment analyses indicated correlations with genes controlling immune-related biological processes and pathways. A nomogram comprised of the immune risk score and most covariates including age, lactate dehydrogenase concentration (LDH), lymphoma-type (germinal centre B cell [GCB] versus non-GCB), Eastern Cooperative Oncology Group performance status (ECOG-PS) and rituximab therapy had a C-statistic of 0·76 compared with C-statistics of 0·69 and 0·69 for the International Prognostic Index (IPI) and Revised International Prognostic Index (R-IPI). These data indicate the immune risk score is an accurate, independent survival predictor in persons with DLBCL.

18.
Sci Total Environ ; 773: 145661, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940749

RESUMO

Zero-valent aluminum (ZVAl) is a promising reductant because of its relatively low redox potential, which can efficiently activate molecular oxygen to generate reactive oxygen species. However, its long-term performance is limited by the intrinsic dense oxide layer and the passivation effect of the accumulative Al-(hydr)oxide on its surface during the reaction. In this study, four clay minerals with different compositions were mixed with ZVAl by ball milling to obtain four composites of ZVAl and clay (ZVAl-Clay), which were used to degrade a high concentration of 4-chlorophenol (4-CP) under ambient conditions. The oxidation efficiencies of different ZVAl-Clays were strongly relevant to Fe contained in the clay minerals. The Fe-free ZVAl-Clay presented poor oxidation performance, whereas the reaction efficiencies of those ZVAl composites with Fe-bearing clays exhibited varying degrees of improvement. In comparison with the original ZVAl, the highest oxidation rate increased by 23 times, the maximum increased OH production was approximately 8 times, and the corresponding mineralization efficiency improved by 38.7%. However, the levels of improved oxidation performance of various ZVAl-Clays were not positively correlated with their actual total Fe contents, and their degradation efficiencies might also be affected by other physical and/or chemical properties of different clays. The synergistic mechanism revealed by various characterizations was that electron transfer might occur from ZVAl to the structural Fe(III) of the clay through the basal plane or edge of clays triggered by ball milling. Thus, the partially produced Fe(II) on the clay surface promoted the Fenton-like reaction to decompose H2O2 into OH for efficient oxidation of 4-CP. In short, the ZVAl composites with Fe-bearing clays deserved further exploration as potential materials for efficient degradation of organic matters in wastewater samples.

19.
Sci Rep ; 11(1): 11210, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045601

RESUMO

Experimental and clinical studies over the past two decades have provided overwhelming evidence that human cancers, including prostate cancer (PCa), harbor cancer stem cells (CSCs) that sustain tumor growth, drive tumor progression and mediate therapy resistance and tumor relapse. Recent studies have also implicated NUMB as a PCa suppressor and an inhibitor of PCa stem cells (PCSCs); however, exactly how NUMB functions in these contexts remains unclear. Here, by employing bioinformatics analysis and luciferase assays and by conducting rescue experiments, we first show that NUMB is directly targeted by microRNA-9-5p (miR-9-5p), an oncogenic miR associated with poor prognosis in many malignancies. We further show that miR-9-5p levels are inversely correlated with NUMB expression in CD44+ PCSCs. miR-9-5p reduced NUMB expression and inhibited numerous PCSC properties including proliferation, migration, invasion as well as self-renewal. Strikingly, overexpression of NUMB in CD44+ PCSCs overcame all of the above PCSC properties enforced by miR-9-5p. Taken together, our results suggest that inhibiting the expression of the oncomiR miR-9-5p and overexpressing NUMB may represent novel therapeutic strategies to target PCSCs and PCa metastasis.

20.
Br J Cancer ; 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34012033

RESUMO

BACKGROUND: We aimed to establish a predictive prognostic risk-stratification model for diffuse large B-cell lymphoma (DLBCL) in the rituximab era. METHODS: The data of 1406 primary DLBCL patients from the Sun Yat-Sen University Cancer Center were analysed to establish a nomogram prognostic index (NPI) model for predicting overall survival (OS) based on pre-treatment indicators. An independent cohort of 954 DLBCL patients from three other hospitals was used for external validation. RESULTS: Age, performance status, stage, lactate dehydrogenase, number of extranodal sites, BCL2, CD5 expression, B symptoms and absolute lymphocyte and monocyte count were the main factors of the NPI model and could stratify the patients into four distinct categories based on their predicted OS. The calibration curve demonstrated satisfactory agreement between the predicted and actual 5-year OS of the patients. The concordance index of the NPI model (0.794) was higher than the IPI (0.759) and NCCN-IPI (0.750), and similar results were obtained upon external validation. For CD5 + DLBCL patients, systemic treatment with high-dose methotrexate was associated with superior OS compared to R-CHOP-based immunochemotherapy alone. CONCLUSIONS: We established and validated an accurate prediction model, which performed better than IPI and NCCN-IPI for prognostic stratification of DLBCL patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...