Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 510
Filtrar
1.
Comput Intell Neurosci ; 2021: 4193625, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721563

RESUMO

It is difficult for the autonomous underwater vehicle (AUV) to recognize targets similar to the environment in lacking data labels. Moreover, the complex underwater environment and the refraction of light cause the AUV to be unable to extract the complete significant features of the target. In response to the above problems, this paper proposes an underwater distortion target recognition network (UDTRNet) that can enhance image features. Firstly, this paper extracts the significant features of the image by minimizing the info noise contrastive estimation (InfoNCE) loss. Secondly, this paper constructs the dynamic correlation matrix to capture the spatial semantic relationship of the target and uses the matrix to extract spatial semantic features. Finally, this paper fuses the significant features and spatial semantic features of the target and trains the target recognition model through cross-entropy loss. The experimental results show that the mean average precision (mAP) of the algorithm in this paper increases by 1.52% in recognizing underwater blurred images.


Assuntos
Algoritmos , Ruído
2.
J Bone Miner Res ; 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34787331

RESUMO

Ectopic calcification is an osteogenic process that leads to the formation of inappropriate bone within intra-articular soft tissues, often in response to injury or surgery. The molecular mechanisms governing this phenotype have yet to be determined. Using a population genetics approach, we identified an association of the kinesin superfamily member 26b (Kif26b) with injury-induced ectopic calcification through quantitative trait locus analysis of recombinant inbred mouse strains, consistent with a genome-wide association study that identified KIF26B as a severity locus for ectopic calcification in patients with hip osteoarthritis. Despite these associations of KIF26B with ectopic calcification, its mechanistic role and functional implications have not yet been fully elucidated. Here, we aim to decipher the functional role of KIF26B in osseous and chondrogenic transdifferentiation of human and murine progenitor/stem cells and in a murine model of non-invasive injury-induced intra-articular ectopic calcification. We found that KIF26B ablation via lentivirus-mediated shRNA significantly arrested osteogenesis of progenitor/stem cells and suppressed the expression of typical osteogenic marker genes. Conversely, KIF26B loss-of-function increased chondrogenesis as demonstrated by enhanced Safranin-O staining and by the elevated expression of chondrogenic marker genes. Furthermore, cell function analysis revealed that KIF26B knockdown significantly decreased cell viability and proliferation and induced cellular apoptosis. Mechanistically, loss of osteogenesis was reverted by the addition of a Wnt agonist, SKL2001, demonstrating a role of KIF26B in canonical Wnt/ß-catenin signaling. Finally, intra-articular delivery of Kif26b shRNA in B6-129SF2/J mice significantly hampered the development of intra-articular ectopic calcification at 8 weeks after injury compared to mice treated with non-target scrambled shRNA. In summary, these observations highlight that KIF26B plays a crucial role in ectopic bone formation by repressing osteogenesis, but not chondrogenesis, potentially via modulating Wnt/ß-catenin signaling. These findings establish KIF26B as a critical determinant of the osteogenic process in pathologic endochondral bone formation and an actionable target for pharmacotherapy to mitigate ectopic calcification (and heterotopic ossification).

3.
Plant Divers ; 43(5): 401-408, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34816065

RESUMO

Liparis aureolabella and L. mengziensis, two new species from the karst region of southwestern China, and L. bingzhongluoensis, a new species from montane region in Yunnan, are described and illustrated. L. aureolabella is easily distinguished from its relatives by having abaxially purple leave with purple reticulate veins prominent adaxially, a lip auriculate at base, and falcate-lanceolate pollinia. Liparis mengziensis is closely related to L. petiolata and L. auriculata, but differs from them by having an ovate to broadly ovate leaf, purple lip and apex connate along the margins. Liparis bingzhongluoensis is similar to Liparis nanlingensis, but the new species is characterized by having a lip with two transparent ridges on its disc, longitudinally concave basal callus and triangular column wings. Phylogenetic analyses based on nuclear ribosomal ITS and plastid matK sequences showed that L. aureolabella and L. mengziensis are nested with L. petiolata or L. auriculata in a monophyletic clade. L. bingzhongluoensis is sister to a clade formed by L. nanlingensis, L. tsii, L. sasakii and L. krameri. Moreover, morphological comparisons strongly support that the three species as separated species newly to science.

4.
Neoplasia ; 23(12): 1227-1239, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34768109

RESUMO

Sorafenib is a first-line molecular-target drug for advanced hepatocellular carcinoma (HCC), and reducing sorafenib resistance is an important issue to be resolved for the clinical treatment of HCC. In the current study, we identified that ABCC5 is a critical regulator and a promising therapeutic target of acquired sorafenib resistance in human hepatocellular carcinoma cells. The expression of ABCC5 was dramatically induced in sorafenib-resistant HCC cells and was remarkably associated with poor clinical prognoses. The down-regulation of ABCC5 expression could significantly reduce the resistance of sorafenib to HCC cells. Importantly, activation of PI3K/AKT/NRF2 axis was essential for sorafenib to induce ABCC5 expression. ABCC5 increased intracellular glutathione (GSH) and attenuated lipid peroxidation accumulation by stabilizing SLC7A11 protein, which inhibited ferroptosis. Additionally, the inhibition of ABCC5 enhanced the anti-cancer activity of sorafenib in vitro and in vivo. These findings demonstrate a novel molecular mechanism of acquired sorafenib resistance and also suggest that ABCC5 is a new regulator of ferroptosis in HCC cells.

5.
EBioMedicine ; 72: 103609, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34628353

RESUMO

BACKGROUND: Schizophrenia (SCZ) is a severe psychiatric disorder that affects approximately 0.75% of the global population. Both genetic and environmental factors contribute to development of SCZ. SCZ tends to run in family while both genetic and environmental factor contribute to its etiology. Much evidence suggested that alterations in DNA methylations occurred in SCZ patients. METHODS: To investigate potential inheritable pattern of DNA methylation in SCZ family, we performed a genome-wide analysis of DNA methylation of peripheral blood samples from 106 Chinese SCZ family trios. Genome-wide DNA methylations were quantified by Agilent 1 × 244 k Human Methylation Microarray. FINDINGS: In this study, we proposed a loci inheritance frequency model that allows characterization of differential methylated regions as SCZ biomarkers. Based on this model, 112 hypermethylated and 125 hypomethylated regions were identified. Additionally, 121 hypermethylated and 139 hypomethylated genes were annotated. The results of functional enrichment analysis indicated that multiple differentially methylated genes (DMGs) involved in Notch/HH/Wnt signaling, MAPK signaling, GPCR signaling, immune response signaling. Notably, a number of hypomethylated genes were significantly enriched in cerebral cortex and functionally enriched in nervous system development. INTERPRETATION: Our findings not only validated previously discovered risk genes of SCZ but also identified novel candidate DMGs in SCZ. These results may further the understanding of altered DNA methylations in SCZ. FUNDING: None.

6.
Mater Sci Eng C Mater Biol Appl ; 130: 112471, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34702545

RESUMO

Hydrogen sulfide (H2S) has been as an essential gasotransmitter and a potential therapeutic approach for several biomedical treatments such as cardiovascular disorders, hypertension, and other diseases. The endogenous and exogenous H2S also plays a crucial role in the bone anabolic process and a protective mechanism in cell signalling. In this study, we have utilized two types of polymers, polycaprolactone (PCL) and gelatin (Gel), for the fabrication of JK-2 (H2S donor) loaded nanofibrous scaffold via electrospinning process for bone healing and bone tissue engineering. Comparing the PCL/Gel and PCL/Gel-JK-2 scaffolds, the latter demonstrated enhanced cell adhesion and proliferation capabilities. Furthermore, both experimental scaffolds have been subjected to an in vivo experiment for 4 and 8 weeks in a bone-defect model of a rabbit to determine their biological responses under physiological conditions. There was an obvious increase in bone regeneration in the PCL/Gel-JK-2 group compared to the control and PCL/Gel groups. These results indicate the use of PCL/Gel scaffolds loaded with JK-2 should be considered for possible bone regeneration.


Assuntos
Regeneração Óssea , Tecidos Suporte , Animais , Adesão Celular , Proliferação de Células , Gelatina , Poliésteres , Coelhos , Engenharia Tecidual
7.
Int J Biol Macromol ; 190: 554-563, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34492250

RESUMO

Natural polysaccharide-based hydrogels are promising in food and pharmaceutical applications. In this study, the potential of composite hydrogels prepared by carboxymethyl cellulose (CMC) and chitosan as glue for cigar wrapping applications was firstly studied. The impacts of degree of carboxymethyl substitution (DS) and the ratio of CMC:chitosan on the adhesive performance and rheological behaviors of composite hydrogels have been investigated. And the results indicated that relatively low DS of CMC and relatively low ratio of chitosan might be favorable for the adhesive properties of composite hydrogels. But a higher ratio of chitosan may significantly improve the rheological properties of composite hydrogels and alter their thermal-sensitivity. The impacts of chitosan on the wet ability with tobacco leaf, the morphology and the XRD patterns of composite hydrogels were also observed. The CMC-chitosan composite hydrogel could significantly decrease the total molds on tobacco leaf brought by CMC, and therefore may show great potential to improve the quality of cigar during long-term storage. All the information in this study is new, which could be useful for exploring the application of CMC-chitosan composite hydrogel in food, pharmaceutical, even other fields.

8.
Microbiome ; 9(1): 187, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526096

RESUMO

BACKGROUND: The plant microbiome is an integral part of the host and increasingly recognized as playing fundamental roles in plant growth and health. Increasing evidence indicates that plant rhizosphere recruits beneficial microbes to the plant to suppress soil-borne pathogens. However, the ecological processes that govern plant microbiome assembly and functions in the below- and aboveground compartments under pathogen invasion are not fully understood. Here, we studied the bacterial and fungal communities associated with 12 compartments (e.g., soils, roots, stems, and fruits) of chili pepper (Capsicum annuum L.) using amplicons (16S and ITS) and metagenomics approaches at the main pepper production sites in China and investigated how Fusarium wilt disease (FWD) affects the assembly, co-occurrence patterns, and ecological functions of plant-associated microbiomes. RESULTS: The amplicon data analyses revealed that FWD affected less on the microbiome of pepper reproductive organs (fruit) than vegetative organs (root and stem), with the strongest impact on the upper stem epidermis. Fungal intra-kingdom networks were less stable and their communities were more sensitive to FWD than the bacterial communities. The analysis of microbial interkingdom network further indicated that FWD destabilized the network and induced the ecological importance of fungal taxa. Although the diseased plants were more susceptible to colonization by other pathogenic fungi, their below- and aboveground compartments can also recruit potential beneficial bacteria. Some of the beneficial bacterial taxa enriched in the diseased plants were also identified as core taxa for plant microbiomes and hub taxa in networks. On the other hand, metagenomic analysis revealed significant enrichment of several functional genes involved in detoxification, biofilm formation, and plant-microbiome signaling pathways (i.e., chemotaxis) in the diseased plants. CONCLUSIONS: Together, we demonstrate that a diseased plant could recruit beneficial bacteria and mitigate the changes in reproductive organ microbiome to facilitate host or its offspring survival. The host plants may attract the beneficial microbes through the modulation of plant-microbiome signaling pathways. These findings significantly advance our understanding on plant-microbiome interactions and could provide fundamental and important data for harnessing the plant microbiome in sustainable agriculture. Video abstract.


Assuntos
Microbiota , Microbiologia do Solo , Bactérias/genética , Microbiota/genética , Raízes de Plantas , Rizosfera
9.
J Cardiothorac Surg ; 16(1): 260, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521432

RESUMO

INTRODUCTION: Sublobar resection has been widely accepted for treating pure ground-glass opacities (GGOs). As GGOs have good prognosis, preserving postoperative pulmonary function is the major concern in surgery. No studies have yet compared the success rates of pulmonary function reservation between segmentectomy and wedge resection. METHOD: The three-dimensional rebuild of computed tomography (CT) images was performed, the segmentectomy and wedge resection of the GGO in the target segment were simulated, and the area of cut surface was measured, which was important data for successful postoperative pulmonary recruitment maneuvers. RESULT: With equal volumes of tissue removed, segmentectomy and wedge resection showed similar surface area loss for RS4 and RS5, followed by LS7 + 8, LS6 and LS1 + 2 segments. Compared with other segments, wedge resection performed in RS10, LS3, LS10, RS9 and RS7 may lead to a loss of lot more surface area than segmentectomy. CONCLUSION: Wedge resection is suggested for segments RS4, RS5, LS1 + 2 and LS7 + 8, whereas segmentectomy is advised for segments RS1, LS4 + 5 and RS2. Meanwhile, deep wedge resection should be avoided for segments RS8, RS7, RS10, LS3, LS10. RS9 and LS9, in order to preserve a larger lung surface area.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Humanos , Pulmão/diagnóstico por imagem , Pulmão/cirurgia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Pneumonectomia , Tomografia Computadorizada por Raios X
10.
Front Med (Lausanne) ; 8: 646710, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513856

RESUMO

The gut microbiome influences nutrient processing as well as host physiology. Plasma lipid levels have been associated with the microbiome, although the underlying mechanisms are largely unknown, and the effects of dietary lipids on the gut microbiome in humans are not well-studied. We used a compilation of four studies utilizing non-human primates (Chlorocebus aethiops and Macaca fascicularis) with treatments that manipulated plasma lipid levels using dietary and pharmacological techniques, and characterized the microbiome using 16S rDNA. High-fat diets significantly reduced alpha diversity (Shannon) and the Firmicutes/Bacteroidetes ratio compared to chow diets, even when the diets had different compositions and were applied in different orders. When analyzed for differential abundance using DESeq2, Bulleidia, Clostridium, Ruminococcus, Eubacterium, Coprocacillus, Lachnospira, Blautia, Coprococcus, and Oscillospira were greater in both chow diets while Succinivibrio, Collinsella, Streptococcus, and Lactococcus were greater in both high-fat diets (oleic blend or lard fat source). Dietary cholesterol levels did not affect the microbiome and neither did alterations of plasma lipid levels through treatments of miR-33 antisense oligonucleotide (anti-miR-33), Niemann-Pick C1-Like 1 (NPC1L1) antisense oligonucleotide (ASO), and inducible degrader of LDLR (IDOL) ASO. However, a liver X receptor (LXR) agonist shifted the microbiome and decreased bile acid levels. Fifteen genera increased with the LXR agonist, while seven genera decreased. Pseudomonas increased on the LXR agonist and was negatively correlated to deoxycholic acid, cholic acid, and total bile acids while Ruminococcus was positively correlated with taurolithocholic acid and taurodeoxycholic acid. Seven of the nine bile acids identified in the feces significantly decreased due to the LXR agonist, and total bile acids (nmol/g) was reduced by 62%. These results indicate that plasma lipid levels have, at most, a modest effect on the microbiome, whereas bile acids, derived in part from plasma lipids, are likely responsible for the indirect relationship between lipid levels and the microbiome.

12.
Nanoscale ; 13(31): 13497-13505, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34477754

RESUMO

Implementation of ammonium halides to trigger low-dimensional perovskite formation has been intensively investigated to achieve blue perovskite light-emitting diodes (PeLEDs). However, the general roles of the incorporated ammonium cations on the quality of the perovskite films, as well as device performance, are still unclear. It is indispensable to build a guideline to rationalize ammonium halides for decent blue emissive films. Here, by thoroughly investigating a series of ammonium cations containing the different number of ammonium groups and ionic radius, we reveal that the mechanism beyond the tunable emission wavelength, crystallization kinetics, and spectral stability of the obtained blue perovskite films is highly relevant to the molecular structure of the ammonium cations. In parallel with reducing the dimensionality to form normal Ruddlesden-Popper phases, the incorporated ammonium cations also likely modulate the Pb-Br orbit coupling through A-site engineering and generate either Dion-Jacobson or "hollow" perovskites, providing alternative routes to achieve efficient and stable blue emissive films. Our work paves a way to rationalize ammonium halides to develop prevailing active layers for further improving the performance of blue PeLEDs.

13.
Artigo em Inglês | MEDLINE | ID: mdl-34487501

RESUMO

Predictive modeling is useful but very challenging in biological image analysis due to the high cost of obtaining and labeling training data. For example, in the study of gene interaction and regulation in Drosophila embryogenesis, the analysis is most biologically meaningful when in situ hybridization (ISH) gene expression pattern images from the same developmental stage are compared. However, labeling training data with precise stages is very time-consuming even for developmental biologists. Thus, a critical challenge is how to build accurate computational models for precise developmental stage classification from limited training samples. In addition, identification and visualization of developmental landmarks are required to enable biologists to interpret prediction results and calibrate models. To address these challenges, we propose a deep two-step low-shot learning framework to accurately classify ISH images using limited training images. Specifically, to enable accurate model training on limited training samples, we formulate the task as a deep low-shot learning problem and develop a novel two-step learning approach, including data-level learning and feature-level learning. We use a deep residual network as our base model and achieve improved performance in the precise stage prediction task of ISH images. Furthermore, the deep model can be interpreted by computing saliency maps, which consists of pixel-wise contributions of an image to its prediction result. In our task, saliency maps are used to assist the identification and visualization of developmental landmarks. Our experimental results show that the proposed model can not only make accurate predictions but also yield biologically meaningful interpretations. We anticipate our methods to be easily generalizable to other biological image classification tasks with small training datasets. Our open-source code is available at https://github.com/divelab/lsl-fly.

14.
Enzyme Microb Technol ; 150: 109869, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34489028

RESUMO

The method of immobilization of glucose oxidase (GOD) on electrodes is especially important for the fabrication and performance of glucose biosensors. In this study, a carbohydrate binding module family 2 (CBM2) was successfully fused to the C terminal of GOD with a natural linker (NL) in endo-ß-xylanase by genetic recombination, and a fusion GOD (GOD-NL-CBM2) was obtained. The CBM2 was used as an affinity adsorption tag for immobilization of the GOD-NL-CBM2 on a cellulose modified electrode. The specific activity of GOD-NL-CBM2 was comparable to that of the wild type GOD. In addition, the CBM2 tag of fusion GOD almost maintained its highest binding capacity under optimal catalytic conditions (pH 5.0, 50 °C). The morphology and composition analysis of the cellulose film reacted with and without GOD or GOD-NL-CBM2 confirmed the immobilization of GOD-NL-CBM2. The electrochemical properties of the GOD-NL-CBM2/cellulose film bioelectrode, with a characteristic peak of H2O2 at +0.6 V in the presence of glucose, revealed the capability of the immobilized GOD-NL-CBM2 to efficiently catalyze glucose and produce H2O2. Additionally, the current signal response of the biosensor to glucose was linear in the concentration range from 1.25 to 40 mM (r2 ≥ 0.99). The sensitivity and detection limit of the GOD-NL-CBM2/cellulose film bioelectrode were 466.7 µA mol-1 L cm-2 and 0.475 mM (S/N = 3), respectively. Moreover, the glucose biosensor exhibited a rapid current change (< 5 s), high reproducibility (Relative standard deviation, RSD < 5%), substrate selectivity and stability, and retained about 80 % of the original current response after 2 months. The affinity adsorption-based immobilization strategy for GOD provides a promising approach to develop a high performance glucose biosensor.


Assuntos
Técnicas Biossensoriais , Glucose Oxidase , Celulose , Eletrodos , Enzimas Imobilizadas , Glucose , Peróxido de Hidrogênio , Reprodutibilidade dos Testes
15.
Int J Biol Sci ; 17(13): 3554-3572, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512165

RESUMO

Background: Alcohol consumption increases the risk of hepatocellular carcinoma (HCC), and associated with a high mortality rate and poor prognosis. N6-methyladenosine (m6A) methylations play key roles in tumorigenesis and progression. However, our current knowledge about m6A in alcohol-related HCC (A-HCC) remains elucidated. Herein, the authors construct an integrative m6A model based on A-HCC subtyping and mechanism exploration workflow. Methods: Based on the m6A expressions of A-HCC and in vivo experiment, different prognosis risk A-HCC subtypes are identified. Meanwhile, multiple interdependent indicators of prognosis including patient survival rate, clinical pathological prognosis and immunotherapy sensitivity. Results: The m6A model includes LRPPRC, YTHDF2, KIAA14219, and RBM15B, classified A-HCC patients into high/low-risk subtypes. The high-risk subtype compared to the low-risk subtype showed phenotypic malignancy, poor prognosis, immunosuppression, and activation of tumorigenesis and proliferation-related pathways, including the E2F target, DNA repair, and mTORC1 signalling pathways. The expression of Immunosuppressive cytokines DNMT1/EZH2 was up-regulated in A-HCC patients, and teniposide may be a potential therapeutic drug for A-HCC. Conclusion: Our model redefined A-HCC prognosis risk, identified potential m6As linking tumour progress and immune regulations and selected possible therapy target, thus promoting understanding and clinical applications about A-HCC.

16.
Artigo em Inglês | MEDLINE | ID: mdl-34433780

RESUMO

PURPOSE: To establish and validate an artificial intelligence (AI)-assisted automatic cataract grading program based on the Lens Opacities Classification System III (LOCSIII). SETTING: Eye and Ear, Nose, and Throat (EENT) Hospital, Fudan University, Shanghai, China. DESIGN: AI training. METHODS: Advanced deep-learning algorithms, including Faster R-CNN and ResNet, were applied to the localization and analysis of the region of interest. An internal dataset from the EENT Hospital of Fudan University and an external dataset from the Pujiang Eye Study were used for AI training, validation, and testing. The datasets were automatically labeled on the AI platform in terms of the capture mode and cataract grading based on the LOCSIII system. RESULTS: The AI program showed reliable capture mode recognition, grading, and referral capability for nuclear and cortical cataract grading. In the internal and external datasets, 99.4% and 100% of automatic nuclear grading, respectively, had an absolute prediction error of ≤ 1.0, with a satisfactory referral capability (area under the curve [AUC]: 0.983 for the internal dataset; 0.977 for the external dataset). 75.0% (internal dataset) and 93.5% (external dataset) of the automatic cortical grades had an absolute prediction error of ≤ 1.0, with AUCs of 0.855 and 0.795 for referral, respectively. Good consistency was observed between automatic and manual grading when both nuclear and cortical cataracts were evaluated. However, automatic grading of posterior subcapsular cataracts was impractical. CONCLUSIONS: The AI program proposed in this study shows robust grading and diagnostic performance for both nuclear and cortical cataracts, based on LOCSIII.

17.
Theranostics ; 11(16): 7620-7639, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335954

RESUMO

Rationale: Acute liver failure (ALF) causes severe liver injury and a systemic inflammatory response, leading to multiorgan failure with a high short-term mortality. Bioartificial liver (BAL) therapy is a promising approach that is hampered by the lack of appropriate bioreactors and carriers to retain hepatic cell function and poor understanding of BAL treatment mechanisms in ALF and extrahepatic organ injury. Recently, we used a fiber scaffold bioreactor (FSB) for the high-density, three-dimensional (3D) culture of primary porcine hepatocytes (PPHs) combined with an absorption component to construct a BAL and verified its function in a D-galactosamine (D-gal)-induced ALF porcine model to evaluate its protective effects on the liver and extrahepatic organs. Methods: Male pigs were randomized into standard/supportive therapy (ST), ST+no-cell BAL (ST+Sham BAL) and ST+BAL groups and received treatment 48 h after receiving a D-gal injection. Changes in blood chemistry and clinical symptoms were monitored for 120 h. Tissues and plasma were collected for analysis by pathological examination, immunoblotting, quantitative PCR and immunoassays. Results: PPHs cultured in the FSB obtained sufficient aeration and nutrition for high-density, 3D culture and maintained superior viability and functionality (biosynthesis and detoxification) compared with those cultured in flasks. All the animals developed ALF, acute kidney injury (AKI) and hepatic encephalopathy (HE) 48 h after D-gal infusion and received corresponding therapies. Animals in the BAL group showed markedly improved survival (4/5; 80%) compared with those in the ST+Sham BAL (0/5; p < 0.001) and ST (0/5; p < 0.001) groups. The levels of blood ammonia and biochemical and inflammatory indices were alleviated after BAL treatment. Increased liver regeneration and attenuations in the occurrence and severity of ALF, AKI and HE were observed in the ST+BAL group compared with the ST (p = 0.0009; p = 0.038) and ST+Sham BAL (p = 0.011; p = 0.031) groups. Gut leakage, the plasma endotoxin level, bacterial translocation, and peripheral and neuroinflammation were alleviated in the ST+BAL group compared with those in the other groups. Conclusions: BAL treatment enhanced liver regeneration and alleviated the systemic inflammatory response and extrahepatic organ injury to prolong survival in the ALF model and has potential as a therapeutic approach for ALF patients.


Assuntos
Falência Hepática Aguda/terapia , Engenharia Tecidual/métodos , Animais , Órgãos Artificiais , Reatores Biológicos , China , Modelos Animais de Doenças , Hepatócitos/citologia , Fígado/patologia , Falência Hepática Aguda/patologia , Fígado Artificial/veterinária , Masculino , Suínos , Tecidos Suporte
18.
Artigo em Inglês | MEDLINE | ID: mdl-34360088

RESUMO

Written vocabulary size plays a key role in children's reading development. We aim to study the relationship between Chinese written vocabulary size and cognitive, emotional, and behavioral factors in primary school students. Using stratified cluster sampling, 1162 pupils from Grade 2~5 in Guangzhou were investigated. Chinese written vocabulary size, cognitive, emotional, and behavioral factors were assessed by the Chinese written vocabulary size assessment scale, the dyslexia checklist for Chinese children (DCCC) and the Strengths and Difficulties Questionnaire (SDQ), respectively. The scores of visual word recognition deficit (ß = -3.32, 95% CI: -5.98, -0.66) and meaning comprehension deficit (ß = -6.52, 95% CI: -9.39, -3.64) were negatively associated with Chinese written vocabulary size; the score of visual word recognition deficit (odds ratio (OR) = 1.04, 95% CI: 1.02, 1.07) was the related factor of a delay in written vocabulary size. The score of meaning comprehension deficit was negatively associated with boys' Chinese written vocabulary size, while the score of auditory word recognition deficit was negatively associated with girls' Chinese written vocabulary size. The related factor of a delay in written vocabulary size was spelling deficit in boys and visual word recognition deficit in girls. There is a significant correlation between Chinese written vocabulary size and cognitive factors, but not emotional and behavioral factors in primary school students and these correlations are different when considering gender.


Assuntos
Leitura , Vocabulário , Criança , China , Compreensão , Feminino , Humanos , Masculino , Instituições Acadêmicas , Estudantes
19.
Bioinformatics ; 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34406374

RESUMO

MOTIVATION: Aberrant DNA methylation is strongly associated with heterogeneity in tumors. This study investigated the prognostic value of CpG island methylator phenotype (CIMP) in hepatocellular carcinoma (HCC). RESULTS: A total of 319 HCC samples with 21,121 CpG sites were included in this study and 215 disease-free survival (DFS) and overall survival (OS)-related CpG sites were identified. These CpG sites were divided into 7 clusters by using consensus clustering method. Cluster 4, which constructed the prognostic prediction model as the seed cluster to evaluate survival risk for DFS and OS of HCC patients, had the lowest methylation level with the worse prognosis. The low-risk group patients had a significantly prolonged DFS and OS than the patients in the high-risk group (p = 0.008 and p < 0.001, respectively). A receiver operating characteristic curve results for predicting DFS and OS was 0.691 and 0.695, respectively. These results suggested that the CpG site methylation appears to be an informative prognostic biomarker in HCC. The CpG site methylation-related prognostic model may be an innovative insight to evaluate clinical outcomes for HCC patients. AVAILABILITY: The code of the analysis is available at https://www.bioconductor.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

20.
Nat Commun ; 12(1): 4831, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376647

RESUMO

Molecular additives are widely utilized to minimize non-radiative recombination in metal halide perovskite emitters due to their passivation effects from chemical bonds with ionic defects. However, a general and puzzling observation that can hardly be rationalized by passivation alone is that most of the molecular additives enabling high-efficiency perovskite light-emitting diodes (PeLEDs) are chelating (multidentate) molecules, while their respective monodentate counterparts receive limited attention. Here, we reveal the largely ignored yet critical role of the chelate effect on governing crystallization dynamics of perovskite emitters and mitigating trap-mediated non-radiative losses. Specifically, we discover that the chelate effect enhances lead-additive coordination affinity, enabling the formation of thermodynamically stable intermediate phases and inhibiting halide coordination-driven perovskite nucleation. The retarded perovskite nucleation and crystal growth are key to high crystal quality and thus efficient electroluminescence. Our work elucidates the full effects of molecular additives on PeLEDs by uncovering the chelate effect as an important feature within perovskite crystallization. As such, we open new prospects for the rationalized screening of highly effective molecular additives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...