Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
Sheng Li Xue Bao ; 74(2): 237-245, 2022 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-35503071

RESUMO

The aim of this study was to investigate the effects of different types of exercise on intestinal mechanical barrier and related regulatory factors in mice with type 2 diabetes mellitus (T2DM). The model was established by high-fat diet feeding and intraperitoneal injection of streptozocin (STZ). The mice were divided into control group, model group (free exercise), resistance exercise group (tail load-bearing ladder climbing, 5 times a week), aerobic exercise group (non-load-bearing platform running, 5 times a week at a speed of 10-15 m/min), and combined exercise group (aerobic exercise was performed on the first, third and fifth days of each week, and resistance exercise on the second and fourth days of each week). After 8 weeks of intervention, the serum lipid levels and inflammatory cytokines were measured by corresponding kits. The pathological changes of ileum were detected by HE and PAS staining. The mRNA and protein expression levels of tight junction-related proteins were detected by real-time qPCR and Western blot, respectively. Moreover, the protein expression levels of hypoxia inducible factor-1α (HIF-1α) and myosin light chain kinase (MLCK) were detected by Western blot. The results showed that all three types of exercise decreased blood glucose and body weight compared to the model group. Aerobic exercise and combined exercise decreased serum lipid (triglycerides and total cholesterol) levels, up-regulated the expression levels of ileal tight junction-related proteins and HIF-1α, improved the intestinal alkaline phosphatase (AKP) activity, reduced serum lipopolysaccharide (LPS), interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α) and diamine oxidase (DAO) levels, and down-regulated MLCK protein expression level. These results suggest that all three types of exercise can reduce blood glucose and body weight of T2DM mice, and aerobic exercise and combined exercise can restore the damaged intestinal mechanical barrier by a mechanism involving HIF-1α-MLCK pathway.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animais , Glicemia , Peso Corporal , Lipopolissacarídeos , Camundongos
2.
Comput Intell Neurosci ; 2022: 2262549, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498209

RESUMO

In recent years, analysis and optimization algorithm based on image data is a research hotspot. Aircraft detection based on aerial images can provide data support for accurately attacking military targets. Although many efforts have been devoted, it is still challenging due to the poor environment, the vastness of the sky background, and so on. This paper proposes an aircraft detection method named TransEffiDet in aerial images based on the EfficientDet method and Transformer module. We improved the EfficientDet algorithm by combining it with the Transformer which models the long-range dependency for the feature maps. Specifically, we first employ EfficientDet as the backbone network, which can efficiently fuse the different scale feature maps. Then, deformable Transformer is used to analyze the long-range correlation for global feature extraction. Furthermore, we designed a fusion module to fuse the long-range and short-range features extracted by EfficientDet and deformable Transformer, respectively. Finally, object class is produced by feeding the feature map to the class prediction net and the bounding box predictions are generated by feeding these fused features to the box prediction net. The mean Average Precision (mAP) is 86.6%, which outperforms the EfficientDet by 5.8%. The experiment shows that TransEffiDet is more robust than other methods. Additionally, we have established a public aerial dataset for aircraft detection, which will be released along with this paper.


Assuntos
Aeronaves , Fontes de Energia Elétrica , Algoritmos
3.
Comput Intell Neurosci ; 2022: 4848425, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463291

RESUMO

Tomato is an important and fragile crop. During the course of its development, it is frequently contaminated with bacteria or viruses. Tomato leaf diseases may be detected quickly and accurately, resulting in increased productivity and quality. Because of the intricate development environment of tomatoes and their inconspicuous disease spot features and small spot area, present machine vision approaches fail to reliably recognize tomato leaves. As a result, this research proposes a novel paradigm for detecting tomato leaf disease. The INLM (integration nonlocal means) filtering algorithm, for example, decreases the interference of surrounding noise on the features. Then, utilizing ResNeXt50 as the backbone, we create DCCAM-MRNet, a novel tomato image recognition network. Dilated Convolution (DC) was employed in STAGE 1 of the DCCAM-MRNet to extend the network's perceptual area and locate the scattered disease spots on tomato leaves. The coordinate attention (CA) mechanism is then introduced to record cross-channel information and direction- and position-sensitive data, allowing the network to more accurately detect localized tomato disease spots. Finally, we offer a mixed residual connection (MRC) technique that combines residual block (RS-Block) and transformed residual block (TR-Block) (TRS-Block). This strategy can increase the network's accuracy while also reducing its size. The DCCAM-classification MRNet's accuracy is 94.3 percent, which is higher than the existing network, and the number of parameters is 0.11 M lesser than the backbone network ResNeXt50, according to the experimental results. As a result, combining INLM and DCCAM-MRNet to identify tomato diseases is a successful strategy.


Assuntos
Recuperação Demorada da Anestesia , Lycopersicon esculentum , Algoritmos , Humanos , Folhas de Planta
4.
J Colloid Interface Sci ; 619: 369-376, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35398767

RESUMO

Materials with adjustable wide-ranging thermal conductivity are desired to tackle the problem of thermal management for electronic devices operating in an extended range of temperature. In this study, graphene aerogels (GAs) are fabricated and transformed from thermal insulators to thermal conductors by high-temperature annealing. The highest through-plane and in-plane thermal conductivity of annealed GA reaches 3.3 and 96 W/m·K, respectively, under 95% compressive strain. Using the annealed GA as thermal interface material leads to superior performance than commercially available products that have higher through-plane thermal conductivity in dissipating heat for high-power electronic devices (e.g., LED lamp). Furthermore, due to excellent elasticity, the thermal resistance of annealed GAs can be reversibly tuned about six-fold by compressive strain. This paves a novel venue in designing thermal management system for devices, which not only need excellent heat dissipation but also good thermal insulation at various operating environments.

5.
PLoS One ; 17(3): e0265258, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35290410

RESUMO

Crack is the external expression form of potential safety risks in bridge construction. Currently, automatic detection and segmentation of bridge cracks remains the top priority of civil engineers. With the development of image segmentation techniques based on convolutional neural networks, new opportunities emerge in bridge crack detection. Traditional bridge crack detection methods are vulnerable to complex background and small cracks, which is difficult to achieve effective segmentation. This study presents a bridge crack segmentation method based on a densely connected U-Net network (BC-DUnet) with a background elimination module and cross-attention mechanism. First, a dense connected feature extraction model (DCFEM) integrating the advantages of DenseNet is proposed, which can effectively enhance the main feature information of small cracks. Second, the background elimination module (BEM) is proposed, which can filter the excess information by assigning different weights to retain the main feature information of the crack. Finally, a cross-attention mechanism (CAM) is proposed to enhance the capture of long-term dependent information and further improve the pixel-level representation of the model. Finally, 98.18% of the Pixel Accuracy was obtained by comparing experiments with traditional networks such as FCN and Unet, and the IOU value was increased by 14.12% and 4.04% over FCN and Unet, respectively. In our non-traditional networks such as HU-ResNet and F U N-4s, SAM-DUnet has better and higher accuracy and generalization is not prone to overfitting. The BC-DUnet network proposed here can eliminate the influence of complex background on the segmentation accuracy of bridge cracks, improve the detection efficiency of bridge cracks, reduce the detection cost, and have practical application value.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Coleta de Dados , Processamento de Imagem Assistida por Computador/métodos
6.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269798

RESUMO

CabZIP63 and CaWRKY40 were previously found to be shared in the pepper defense response to high temperature stress (HTS) and to Ralstonia solanacearum inoculation (RSI), forming a transcriptional cascade. However, how they activate the two distinct defense responses is not fully understood. Herein, using a revised genetic approach, we functionally characterized CabZIP23 in the CabZIP63-CaWRKY40 cascade and its context specific pepper immunity activation against RSI by interaction with CabZIP63. CabZIP23 was originally found by immunoprecipitation-mass spectrometry to be an interacting protein of CabZIP63-GFP; it was upregulated by RSI and acted positively in pepper immunity against RSI by virus induced gene silencing in pepper plants, and transient overexpression in Nicotiana benthamiana plants. By chromatin immunoprecipitation (ChIP)-qPCR and electrophoresis mobility shift assay (EMSA), CabZIP23 was found to be directly regulated by CaWRKY40, and CabZIP63 was directly regulated by CabZIP23, forming a positive feedback loop. CabZIP23-CabZIP63 interaction was confirmed by co-immunoprecipitation (CoIP) and bimolecular fluorescent complimentary (BiFC) assays, which promoted CabZIP63 binding immunity related target genes, including CaPR1, CaNPR1 and CaWRKY40, thereby enhancing pepper immunity against RSI, but not affecting the expression of thermotolerance related CaHSP24. All these data appear to show that CabZIP23 integrates in the CabZIP63-CaWRKY40 cascade and the context specifically turns it on mounting pepper immunity against RSI.


Assuntos
Capsicum , Ralstonia solanacearum , Capsicum/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Doenças das Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ralstonia solanacearum/metabolismo
7.
Adv Mater ; : e2110511, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35259283

RESUMO

High-entroy (HE) electrocatalysts are becoming the research hotspot due to their interesting "Cocktail Effect" and great potential for tailored catalytic properties. However, it is still a great challenge to illustrate their inherent catalytic mechanism for "Cocktail Effect", and there is also a paucity of quantitative descriptors to characterize the specific catalytic activity and give logical design stratiges for HE systems. Herein we first report unexpected activation of all metal sites in HE Cu-Co-Fe-Ag-Mo (oxy)hydroxides for oxygen evolution reaction (OER) and find that metal-oxygen d-p hybridization as an effective descriptor can indicate the intrinsic activity of each metal site. According to the quantitative hybridizaiton, introducing electrons donor (e.g., Ag) is raised and verified to reinforce the electrocatalytic activity of HE system. Consequently, we construct Ag-decorated Co-Cu-Fe-Ag-Mo (oxy)hydroxide (Ag@CoCuFeAgMoOOH) electrocatalysts by an electrochemical reconstruction method and their OER performances are thoroughly characterized. The Ag@CoCuFeAgMoOOH is verified with a low overpotential (270 mV at 100 mA/cm2 ) and a small Tafel slope (35.3 mV/dec) as well as good electrochemical stability. The favorable activity of electrons donor and underlying synergistic "Cocktail Effect" are demonstrated and disclosed. Our work opens up a new strategy to guide the design/fabricaiton of advanced HE electrocatalysts. This article is protected by copyright. All rights reserved.

8.
PLoS Genet ; 18(2): e1010023, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35226664

RESUMO

Pepper (Capsicum annuum) responds differently to high temperature stress (HTS) and Ralstonia solanacearum infection (RSI) but employs some shared transcription factors (TFs), such as CabZIP63 and CaWRKY40, in both cases. How the plant activates and balances these distinct responses, however, was unclear. Here, we show that the protein CaSWC4 interacts with CaRUVBL2 and CaTAF14b and they all act positively in pepper response to RSI and thermotolerance. CaSWC4 activates chromatin of immunity or thermotolerance related target genes of CaWRKY40 or CabZIP63 by promoting deposition of H2A.Z, H3K9ac and H4K5ac, simultaneously recruits CabZIP63 and CaWRKY40 through physical interaction and brings them to their targets (immunity- or thermotolerance-related genes) via binding AT-rich DNA element. The above process relies on the recruitment of CaRUVBL2 and TAF14 by CaSWC4 via physical interaction, which occurs at loci of immunity related target genes only when the plants are challenged with RSI, and at loci of thermotolerance related target genes only upon HTS. Collectively, our data suggest that CaSWC4 regulates rapid, accurate responses to both RSI and HTS by modulating chromatin of specific target genes opening and recruiting the TFs, CaRUVBL2 and CaTAF14b to the specific target genes, thereby helping achieve the balance between immunity and thermotolerance.


Assuntos
Capsicum , Ralstonia solanacearum , Termotolerância , Capsicum/genética , Cromatina/genética , Cromatina/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Doenças das Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ralstonia solanacearum/genética , Ralstonia solanacearum/metabolismo
9.
Environ Res ; 211: 113010, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35219628

RESUMO

Methanogens have been significant for the achievement of carbon neutrality in wastewater treatment plants due to their crucial roles in the anaerobic digestion of sludge. Nevertheless, the phylogenetic diversity of methanogens and their versatile metabolism have been continuously investigated, the current scientific knowledge regarding these microbes appears inadequate and requires more evaluations. This study is considered an endeavor in which functional genes sequencing was used to reveal the diversity of methanogens in the sludge process of the wastewater treatment plant. The information obtained was substantially more than that employing 16s sequencing. The methanogenic microbial resources were appropriate to sustain a self-inoculated energy recovery with a potential ability to boost methane production. A constancy was observed in 16 S rRNA gene and mcrA gene sequencing results, where the bacterial or Methanosaeta concilii dominated community of DS (digest sludge) was distinct from the inoculum sources TS (total sludge), CTS (concentrated total sludge), and HTS (hydrolysis total sludge), indicating the independent development of DS. A quantitative cross-network was constructed by coupling the absolute quantify of 16 S rRNA and mcrA sequences. The Methanobacterium petrolearium actively interacted with bacteria in the DS community rather than the dominant species (Methanosaeta concilii). Moreover, the unclassified methanogens were identified to be significantly prevalent in all communities, suggesting that unknown methanogenic taxa might be imperative in accomplishing community functions. Collectively, the findings of this research study will shed light on the comprehensive knowledge of microbial communities, especially the methanogenic microbiota. This will further enhance the exploration of the phylogenetic diversity of methanogens and their corresponding impacts in energy recovery from wastewater treatment plants.

10.
Arthritis Rheumatol ; 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35080151

RESUMO

OBJECTIVE: Cartilage oligomeric matrix protein (COMP) is an autoantigen in rheumatoid arthritis (RA) and experimental models of arthritis. This study was undertaken to investigate the structure, function, and relevance of anti-COMP antibodies. METHODS: We investigated the pathogenicity of monoclonal anti-COMP antibodies in mice using passive transfer experiments, and we explored the interaction of anti-COMP antibodies with cartilage using immunohistochemical staining. The interaction of the monoclonal antibody 15A11 in complex with its specific COMP epitope P6 was determined by x-ray crystallography. An enzyme-linked immunosorbent assay and a surface plasma resonance technique were used to study the modulation of calcium ion binding to 15A11. The clinical relevance and value of serum IgG specific to the COMP P6 epitope and its citrullinated variants were evaluated in a large Swedish cohort of RA patients. RESULTS: The murine monoclonal anti-COMP antibody 15A11 induced arthritis in naive mice. The crystal structure of the 15A11-P6 complex explained how the antibody could bind to COMP, which can be modulated by calcium ions. Moreover, serum IgG specific to the COMP P6 peptide and its citrullinated variants was detectable at significantly higher levels in RA patients compared to healthy controls and correlated with a higher disease activity score. CONCLUSION: Our findings provide the structural basis for binding a pathogenic anti-COMP antibody to cartilage. The recognized epitope can be citrullinated, and levels of antibodies to this epitope are elevated in RA patients and correlate with higher disease activity, implicating a pathogenic role of anti-COMP antibodies in a subset of RA patients.

11.
Artigo em Inglês | MEDLINE | ID: mdl-35025748

RESUMO

With the development of sensors, more and more multimodal data are accumulated, especially in biomedical and bioinformatics fields. Therefore, multimodal data analysis becomes very important and urgent. In this study, we combine multi-kernel learning and transfer learning, and propose a feature-level multi-modality fusion model with insufficient training samples. To be specific, we firstly extend kernel Ridge regression to its multi-kernel version under the lp-norm constraint to explore complementary patterns contained in multimodal data. Then we use marginal probability distribution adaption to minimize the distribution differences between the source domain and the target domain to solve the problem of insufficient training samples. Based on epilepsy EEG data provided by the University of Bonn, we construct 12 multi-modality & transfer scenarios to evaluate our model. Experimental results show that compared with baselines, our model performs better on most scenarios.

13.
Plant Cell Environ ; 45(2): 459-478, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34778967

RESUMO

Plant diseases generally tend to be more serious under conditions of high temperature and high humidity (HTHH) than under ambient temperature, but plant immunity against pathogen attacks under HTHH remains elusive. Herein, we used pepper as an example to study how Solanaceae cope with Ralstonia solanacearum infection (RSI) under HTHH by performing RNA-seq combined with the reverse genetic method. The result showed that immunities mediated by salicylic acid (SA) and jasmonic acid (JA) in pepper roots were activated by RSI under ambient temperature. However, upon RSI under HTHH, JA signalling was blocked and SA signalling was activated early but its duration was greatly shortened in pepper roots, instead, expression of CaIPT5 and Glutathione S-transferase encoding genes, as well as endogenous content of trans-Zeatin, were enhanced. In addition, by silencing in pepper plants and overexpression in Nicotiana benthamiana, CaIPT5 was found to act positively in the immune response to RSI under HTHH in a way related to CaPRP1 and CaMgst3. Furthermore, the susceptibility of pepper, tomato and tobacco to RSI under HTHH was significantly reduced by exogenously applied tZ, but not by either SA or MeJA. All these data collectively suggest that pepper employs cytokinin-mediated immunity to cope with RSI under HTHH.


Assuntos
Capsicum/imunologia , Citocininas/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal , Ralstonia solanacearum/fisiologia , Capsicum/microbiologia , Temperatura Alta , Umidade
14.
J Colloid Interface Sci ; 608(Pt 3): 2407-2413, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34753625

RESUMO

Both high through-plane thermal conductivity and low elastic modulus can reduce thermal interface resistance, which is important for thermal interface materials. The internal porous structure of graphene aerogel (GA) makes it to have a low elastic modulus, which results in its good compressibility. Also, the network structure of GA provides thermal conducting paths, which improve the through-plane thermal conductivity of GA. Annealing GA at 3000 °C helps to remove oxygen-containing functional groups and reduces defects. This greatly improves its crystallinity, which further leads to the improvement of its through-plane thermal conductivity and it has a low modulus of 1.37Mpa. The through-plane thermal conductivity of GA annealed at 3000 °C (GA-3000) was improved as the pressure increased and got to 2.93 W/ m K at a pressure of 1.13 MPa, which is 30 times higher than other graphene-based thermal interface materials (TIMs). These discoveries offer a novel approach for preparing excellent TIMs.

15.
New Phytol ; 233(4): 1843-1863, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34854082

RESUMO

CaWRKY40 in pepper (Capsicum annuum) promotes immune responses to Ralstonia solanacearum infection (RSI) and to high-temperature, high-humidity (HTHH) stress, but how it interacts with upstream signalling components remains poorly understood. Here, using approaches of reverse genetics, biochemical and molecular biology we functionally characterised the relationships among the WRKYGMK-containing WRKY protein CaWRKY27b, the calcium-dependent protein kinase CaCDPK29, and CaWRKY40 during pepper response to RSI or HTHH. Our data indicate that CaWRKY27b is upregulated and translocated from the cytoplasm to the nucleus upon phosphorylation of Ser137 in the nuclear localisation signal by CaCDPK29. Using electrophoretic mobility shift assays and microscale thermophoresis, we observed that, due to the replacement of Q by M in the conserved WRKYGQK, CaWRKY27b in the nucleus failed to bind to W-boxes in the promoters of immunity- and thermotolerance-related marker genes. Instead, CaWRKY27b interacted with CaWRKY40 and promoted its binding and positive regulation of the tested marker genes including CaNPR1, CaDEF1 and CaHSP24. Notably, mutation of the WRKYGMK motif in CaWRKY27b to WRKYGQK restored the W-box binding ability. Our data therefore suggest that CaWRKY27b is phosphorylated by CaCDPK29 and acts as a transcriptional activator of CaWRKY40 during the pepper response to RSI and HTHH.


Assuntos
Capsicum , Ralstonia solanacearum , Termotolerância , Capsicum/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Naunyn Schmiedebergs Arch Pharmacol ; 395(1): 13-25, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851450

RESUMO

Macrophages are myeloid immune cells, present in virtually all tissues which exhibit considerable functional plasticity and diversity. Macrophages are often subdivided into two distinct subsets described as classically activated (M1) and alternatively activated (M2) macrophages. It has recently emerged that metabolites regulate the polarization and function of macrophages by altering metabolic pathways. These metabolites often cannot freely pass the cell membrane and are therefore transported by the corresponding metabolite transporters. Here, we reviewed how glucose, glutamate, lactate, fatty acid, and amino acid transporters are involved in the regulation of macrophage polarization. Understanding the interactions among metabolites, metabolite transporters, and macrophage function under physiological and pathological conditions may provide further insights for novel drug targets for the treatment of macrophage-associated diseases. In Brief Recent studies have shown that the polarization and function of macrophages are regulated by metabolites, most of which cannot pass freely through biofilms. Therefore, metabolite transporters required for the uptake of metabolites have emerged seen as important regulators of macrophage polarization and may represent novel drug targets for the treatment of macrophage-associated diseases. Here, we summarize the role of metabolite transporters as regulators of macrophage polarization.


Assuntos
Ativação de Macrófagos/fisiologia , Macrófagos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Animais , Membrana Celular/metabolismo , Humanos
17.
Angew Chem Int Ed Engl ; 61(5): e202112749, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34806809

RESUMO

Plasmonic metals under photoexcitation can generate energetic hot electrons to directly induce chemical reactions. However, the capability and fundamental insights of the transportation of these hot electrons at plasmonic metal-2D material interfaces remain unclear. Herein, hot-electron transfer at Au-graphene interfaces has been in situ studied using surface-enhanced Raman spectroscopy (SERS) with atomic layer accuracy. Combining in situ SERS studies with density functional theory calculations, it is proved that hot electrons can be injected from plasmonic Au nanoparticles to graphene and directly penetrate graphene to trigger photocatalytic reactions. With increasing graphene layers, the transportation of hot electrons decays rapidly and would be completely blocked after five layers of graphene. Moreover, the transfer of hot electrons can be modulated by applying an external electric field, and the hot-electron transfer efficiency under electrochemical conditions is improved by over three times in the presence of a monolayer of graphene.

18.
Environ Res ; 208: 112540, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34915033

RESUMO

One-stage partial nitritation/anammox (PN/A) process has been recognized as a sustainable technology to treat various domestic and industrial wastewater, due to its low aeration consumption and chemical dosage. However, there is no study to investigate the feasibility of PN/A to treat coal to ethylene glycol (CtEG) wastewater yet, which contains very complex and toxic compounds including ammonium, ethylene glycol, methanol and phenolic. This study for the first time achieved stable one-stage PN/A process in a pilot-scale integrated fixed-film activated sludge (IFAS) reactor treating real wastewater produced from a CtEG plant. An average nitrogen removal efficiency of 79.5% was obtained under average nitrogen loading rate of 0.65 ± 0.09 kg N·m-3·d-1 under steady state. Moreover, the kinetic model can effectively predict the nitrogen removal rate of PN/A process. Microbial community characterization showed that ammonia oxidizing bacteria (AOB) were enriched in the flocculent sludge (12.0 ± 1.3%), while anammox bacteria (AnAOB) were primarily located in the biofilm (16.1 ± 5.6%). Meanwhile, the presence of free ammonia (FA) in conjunction with residual ammonium control could efficiently suppress the growth of NOB. Collectively, this study demonstrated the one-stage PN/A process is a promising technology to remove nitrogen from CtEG wastewater.


Assuntos
Compostos de Amônio , Águas Residuárias , Reatores Biológicos , Carvão Mineral , Etilenoglicol , Nitrogênio , Oxirredução , Esgotos
19.
Chemosphere ; 287(Pt 1): 132057, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34474376

RESUMO

High-salinity organic wastewater usually consists of diverse highly concentrated ions such as Na+, Ca2+ and Al3+ etc., which may significantly influence the fouling propensity when membrane technique is employed for contaminants removal. The current work investigated the effects of high salinity especially high-concentration Na+, Ca2+ and Al3+ on UF fouling characteristics, where 2 M Na+ and 0.5-1.0 M Ca2+ or Al3+ were applied according to the general composition of high-salinity wastewater. The results demonstrated that the presence of high-concentration Na+ alone benefited the ultrafiltration of bovine serum albumin (BSA) solution, but posed adverse effects on the ultrafiltration of humic acid (HA) solution. Further addition of Ca2+ or Al3+ on the basis of Na+ was found to aggravate the development of BSA fouling. Such differentiated behaviors were further elucidated by the comprehensive fouling characterizations in terms of foulant properties, specific resistances, filtration modelling and fouling layer observations. Correlation analysis suggested that irreversible fouling had strong relationship with Al3+ addition, while reversible fouling seemed to be primarily influenced by foulant size. Meanwhile, membrane rejection in the presence of various salts remarkably decreased, which was negatively correlated with zeta potential. Consequently, this study should shed light on the membrane fouling formation for treating high-salinity organic wastewater using membrane techniques.


Assuntos
Ultrafiltração , Purificação da Água , Substâncias Húmicas/análise , Membranas Artificiais , Salinidade , Águas Residuárias
20.
Nanomaterials (Basel) ; 11(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34835594

RESUMO

Chronic wound repair is a common complication in patients with diabetes mellitus, which causes a heavy burden on social medical resources and the economy. Hypaphorine (HYP) has good anti-inflammatory effect, and chitosan (CS) is used in the treatment of wounds because of its good antibacterial effect. The purpose of this research was to investigate the role and mechanism of HYP-nano-microspheres in the treatment of wounds for diabetic rats. The morphology of HYP-NPS was observed by transmission electron microscopy (TEM). RAW 264.7 macrophages were used to assess the bio-compatibility of HYP-NPS. A full-thickness dermal wound in a diabetic rat model was performed to evaluate the wound healing function of HYP-NPS. The results revealed that HYP-NPS nanoparticles were spherical with an average diameter of approximately 50 nm. The cell experiments hinted that HYP-NPS had the potential as a trauma material. The wound test in diabetic rats indicated that HYP-NPS fostered the healing of chronic wounds. The mechanism was through down-regulating the expression of pro-inflammatory cytokines IL-1ß and TNF-α in the skin of the wound, and accelerating the transition of chronic wound from inflammation to tissue regeneration. These results indicate that HYP-NPS has a good application prospect in the treatment of chronic wounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...