Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Zhongguo Yi Liao Qi Xie Za Zhi ; 45(2): 215-218, 2021 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-33825385

RESUMO

In this paper, some significant problems, which were found frequently in the products of autoimmune in vitro diagnostic reagents, were summarized and analyzed in detail, and meanwhile a few relevant suggestions were put forward, which should be paid attention in the process of registration and application.


Assuntos
Indicadores e Reagentes
2.
Sensors (Basel) ; 21(2)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440659

RESUMO

Microelectromechanical (MEMS) piezoelectric accelerometers are diversely used in consumer electronics and handheld devices due to their low power consumption as well as simple reading circuit and good dynamic performance. In this paper, a tri-axial piezoelectric accelerometer with folded beams is presented. The four beam suspensions are located at two sides of the mass aligned with edges of the mass, and the thickness of the beams is the same as the thickness of the mass block. In order to realize the multi-axis detection, a total of 16 sensing elements are distributed at the end of the folded beams. The structural deformations, stress distribution, and output characteristics due to the acceleration in x-, y-, and z-axis directions are theoretically analyzed and simulated. The proposed accelerometer is fabricated by MEMS processes to form Mo/AlN/ScAlN/Mo piezoelectric stacks as the sensing layer. Experiments show that the charge sensitivity along the x-, y-, and z-axes could reach up to ~1.07 pC/g, ~0.66 pC/g, and ~3.35 pC/g. The new structure can provide inspiration for the design of tri-axial piezoelectric accelerometers with great sensitivity and linearity.

3.
Curr Biol ; 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33217322

RESUMO

Circadian clocks orchestrate daily rhythms in organismal physiology and behavior to promote optimal performance and fitness. In Drosophila, key pacemaker proteins PERIOD (PER) and TIMELESS (TIM) are progressively phosphorylated to perform phase-specific functions. Whereas PER phosphorylation has been extensively studied, systematic analysis of site-specific TIM phosphorylation is lacking. Here, we identified phosphorylation sites of PER-bound TIM by mass spectrometry, given the importance of TIM as a modulator of PER function in the pacemaker. Among the 12 TIM phosphorylation sites we identified, at least two of them are critical for circadian timekeeping as mutants expressing non-phosphorylatable mutations exhibit altered behavioral rhythms. In particular, we observed that CK2-dependent phosphorylation of TIM(S1404) promotes nuclear accumulation of PER-TIM heterodimers by inhibiting the interaction of TIM and nuclear export component, Exportin 1 (XPO1). We propose that proper level of nuclear PER-TIM accumulation is necessary to facilitate kinase recruitment for the regulation of daily phosphorylation rhythm and phase-specific transcriptional activity of CLOCK (CLK). Our results highlight the contribution of phosphorylation-dependent nuclear export of PER-TIM heterodimers to the maintenance of circadian periodicity and identify a new mechanism by which the negative elements of the circadian clock (PER-TIM) regulate the positive elements (CLK-CYC). Finally, because the molecular phenotype of tim(S1404A) non-phosphorylatable mutant exhibits remarkable similarity to that of a mutation in human timeless that underlies familial advanced sleep phase syndrome (FASPS), our results revealed an unexpected parallel between the functions of Drosophila and human TIM and may provide new insights into the molecular mechanisms underlying human FASPS.

4.
Respir Res ; 21(1): 292, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33148273

RESUMO

BACKGROUND: There is increasing evidence that the lung is a target organ of diabetes. This study aimed to examine in detail the association between diabetes mellitus and pulmonary function using a national cohort. We also aimed to explore the non-linear association between pulmonary function and blood glucose, insulin resistance, and C-reactive protein (CRP). METHODS: A total of 30,442 participants from the National Health and Nutrition Examination Survey from the period between 2007 and 2012 were included. The cross-sectional association between diabetes mellitus and pulmonary function was assessed using multiple linear regression. Where there was evidence of non-linearity, we applied a restricted cubic spline with three knots to explore the non-linear association. Partial mediation analysis was performed to evaluate the underlying mechanism. All analyses were weighted to represent the US population and to account for the intricate survey design. RESULTS: A total of 8584 people were included in the final study population. We found that diabetes was significantly associated with reduced forced expiratory volume in one second (FEV1) and forced vital capacity. We further found L-shaped associations between hemoglobin A1c (HbA1c) and pulmonary function. There was a negative association between HbA1c and FEV1 in diabetes participants with good glucose control (HbA1c < 7.0%), but not in patients with poor glucose control. A non-linear association was also found with fasting plasma glucose, 2 h-plasma glucose after oral glucose tolerance test, insulin resistance, and CRP. Finally, we found that diabetes duration did not affect pulmonary function, and the deleterious effect of diabetes on pulmonary function was mediated by hyperglycemia, insulin resistance, low-grade chronic inflammation (CRP), and obesity. CONCLUSIONS: Diabetes mellitus is non-linearly associated with pulmonary function. Our finding of a negative association between HbA1c and FEV1 in diabetes patients with good glucose control but not in patients with poor glucose control indicates that a stricter glycemic target should be applied to diabetic patients to improve pulmonary function. Given, the cross-sectional nature of this research, a longitudinal study is still needed to validate our findings.

5.
Front Pediatr ; 8: 585646, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194920

RESUMO

Introduction: Carnitine-acylcarnitine translocase deficiency (CACTD) is a rare and life-threatening autosomal recessive disorder of mitochondrial fatty acid oxidation caused by variation of the Solute carrier family 25 member 20 (SLC25A20) gene. Carnitine-acylcarnitine translocase is one of the crucial transport proteins in the oxidation process of mitochondrial fatty acids. In Asia, the c.199-10T>G splice site variation is the most frequently reported variant of SLC25A20. Patients with CACTD with c.199-10T>G variation usually present with a severe clinical phenotype. Materials and Methods: Herein, we report a neonatal case of late-onset CACTD in mainland China. Symptoms emerged 61 days after birth; the patient presented with a severe metabolic crisis, and her clinical condition rapidly deteriorated, and she died of respiratory insufficiency and cardiac arrest at 61 days. We present the clinical and biochemical features of this patient and briefly review previously reported CACTD cases with c.199-10T>G variation. Results: Acylcarnitine profiling by tandem mass spectrometry and high-throughput sequencing revealed that our patient was homozygous for the c.199-10T>G variation, confirming the diagnosis of CACTD. Histopathologic analysis of the liver by Prussian blue staining showed focal iron deposition in hepatocytes, and electron microscopy analysis revealed a large number of lipid droplet vacuoles in diffusely distributed hepatocytes. Conclusion: The development of CACTD in our patient 61 days after birth is the latest reported onset for CACTD with SLC25A20 c.199-10T>G variation. Early recognition of symptoms and timely and appropriate treatment are critical for improving the outcome of this highly lethal disorder. Death from late-onset CACTD may be caused by the accumulation of long-chain fatty acids as well as iron deposition in the heart leading to heart failure.

6.
Front Genet ; 11: 539292, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33033495

RESUMO

Bronchopulmonary dysplasia (BPD) is a complex disorder resulting from interactions between genes and the environment. The accurate molecular etiology of BPD remains largely unclear. This study aimed to identify key BPD-associated genes and pathways functionally enriched using weighted gene co-expression network analysis (WGCNA). We analyzed microarray data of 62 pre-term patients with BPD and 38 pre-term patients without BPD from Gene Expression Omnibus (GEO). WGCNA was used to construct a gene expression network, and genes were classified into definite modules. In addition, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of BPD-related hub genes were performed. Firstly, we constructed a weighted gene co-expression network, and genes were divided into 10 modules. Among the modules, the yellow module was related to BPD progression and severity and included the following hub genes: MMP25, MMP9, SIRPA, CKAP4, SLCO4C1, and SLC2A3; and the red module included some co-expression molecules that displayed a continuous decline in expression with BPD progression and included the following hub genes: LEF1, ITK, CD6, RASGRP1, IL7R, SKAP1, CD3E, and ICOS. GO and KEGG analyses showed that high expression of inflammatory response-related genes and low expression of T cell receptor activation-related genes are significantly correlated with BPD progression. The present WGCNA-based study thus provides an overall perspective of BPD and lays the foundation for identifying potential pathways and hub genes that contribute to the development of BPD.

7.
Vet Microbiol ; 251: 108886, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33129042

RESUMO

Messenger RNA-based vaccines represent new tools with prophylactic and therapeutic potential characterized by high flexibility of application for infectious diseases. Pseudorabies virus (PRV) is one of the major viruses affecting the pig industry. PRV has serious effects in piglets, sows, and growing-fattening pigs and can lead to huge economic losses. In this study, an envelope glycoprotein D (gD) gene-based specific mRNA vaccine was generated, and a mouse model was used to investigate the protective efficacy of the vaccine. The gD mRNA vaccine and the recombinant plasmid pVAX-gD were transfected into BHK21 cells, and the antigenicity of the expressed proteins was detected by Western blot analysis. Groups of mice were vaccinated with the gD mRNA vaccine, pVAX-gD, and PBS. T cell immune responses were measured by flow cytometry or ELISA and serum neutralization tests every two weeks. The challenge with the PRV-XJ strain was performed eight weeks after the primary immunization, and the response was monitored for 15 days. The levels of specific and neutralizing antibodies in the gD mRNA vaccine group were significantly increased in 8 weeks compared to those in the control group, and cytokine levels, including that of IFN-γ/IL-2, were considerably higher than those in the control animal. Additionally, the proportion of CD4+/CD8+ cells in peripheral lymphocytes was remarkably increased. Our data demonstrate that mRNA is a promising and effective tool for the development of vaccines. The PRV-gD-based mRNA vaccine can elicit an efficient neutralizing antibody response and induce effective protection in mice in defense against PRV infection.

8.
Zhongguo Dang Dai Er Ke Za Zhi ; 22(10): 1114-1118, 2020 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-33059810

RESUMO

This article reports the clinical and genetic features of a case of Tatton-Brown-Rahman syndrome (TBRS) caused by DNMT3A gene mutation. A girl, aged 8 months and 14 days, had the clinical manifestations of psychomotor retardation, hypotonia, ventricular enlargement, and tonsillar hernia malformation. Gene analysis identified a novel heterozygous mutation, c.134C>T(p.A45V), in the DNMT3A gene, and the wild type was observed at this locus in her parents. This mutation was determined as a possible pathogenic mutation according to the guidelines of American College of Medical Genetics and Genomics, which had not been reported in previous studies and conformed to autosomal dominant inheritance. This child was diagnosed with TBRS. TBRS often has a good prognosis, with overgrowth and mental retardation as the most common clinical manifestations, and behavioral and psychiatric problems, scoliosis, and afebrile seizures are possible complications of TBRS. The possibility of TBRS should be considered for children with overgrowth and mental retardation, and genetic diagnosis should be conducted when necessary.

9.
Appl Radiat Isot ; 166: 109299, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32911439

RESUMO

The work aimed to calculate the radiation biological shielding performance of particle reinforced metal matrix composite (PRMMCs) using more reasonable model instead of conventional Uniform Filling Model, also attempted to provide a basis for the radiation shielding optimal design of such materials. Firstly, RSA (Random Sequential Adsorption) Model and GRM (Grid Random Model) were established based on MATLAB and Monte Carlo Particle transport program MCNP, and then advantages and disadvantages of them were compared. Later, the influences of metal matrix type, particle (B4C) content, particle shape and particle shape parameters on the biological shielding performance of materials were calculated under different energy neutrons and different thickness shield using random models. Finally, the optimal aspect ratio of regular hexahedral B4C was calculated by Genetic Algorithm combined with MATLAB and MCNP. It indicated that GRM could be applied to radiation shielding calculation of PRMMCs.

10.
Nanotechnology ; 31(48): 485709, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-32931463

RESUMO

Protein-based nanoparticles have developed rapidly in areas such as drug delivery, biomedical imaging and biocatalysis. Ferritin possesses unique properties that make it attractive as a potential platform for a variety of nanobiotechnological applications. Here we synthesized magnetoferritin (P-MHFn) nanoparticles for the first time by using the human H chain of ferritin that was expressed by Pichia pastoris (P-HFn). Western blot results showed that recombinant P-HFn was successfully expressed after methanol induction. Transmission electron microscopy (TEM) showed the spherical cage-like shape and monodispersion of P-HFn. The synthesized magnetoferritin (P-MHFn) retained the properties of magnetoferritin nanoparticles synthesized using HFn expressed by E. coli (E-MHFn): superparamagnetism under ambient conditions and peroxidase-like activity. It is stable under a wider range of pH values (from 5.0 to 11.0), likely due to post-translational modifications such as N-glycosylation on P-HFn. In vivo near-infrared fluorescence imaging experiments revealed that P-MHFn nanoparticles can accumulate in tumors, which suggests that P-MHFn could be used in tumor imaging and therapy. An acute toxicity study of P-MHFn in Sprague Dawley rats showed no abnormalities at a dose up to 20 mg Fe Kg-1 body weight. Therefore, this study shed light on the development of magnetoferritin nanoparticles using therapeutic HFn expressed by Pichia pastoris for biomedical applications.

11.
Diabetes Metab ; 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32889114

RESUMO

AIM: Evidence of the lungs being a target organ of diabetes-related pathophysiology is increasing, and decreased pulmonary function increases the risk of diabetes after adjusting for demographic and metabolic factors. This systematic review and meta-analysis evaluates the bidirectional relationship between diabetes and pulmonary function. METHODS: MEDLINE, Embase, The Cochrane Library and Web of Science databases were searched, and all studies describing this bidirectional relationship were identified. Two reviewers independently extracted study characteristics and assessed the risk of bias. RESULTS: A total of 93 studies were included in the meta-analysis. The pooled weighted mean difference (WMD) between diabetes patients and non-diabetic participants for forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) were -5.65% and -5.91%, respectively, of predicted values. Diabetes-related microvascular complications and poor glycaemic control were associated with poorer pulmonary function in those with diabetes. In addition, diabetes was associated with a restrictive spirometry pattern (RSP) in both cross-sectional studies [odds ratio (OR): 2.88, 95% confidence interval (CI): 2.18-3.81, I2 = 0.0%] and prospective cohort studies [hazard ratio (HR): 1.57, 95% CI: 1.04-2.36]. In five longitudinal studies, the conclusions were inconsistent as to whether or not diabetes accelerates pulmonary function decline. However, every 10% decrease in baseline predicted FVC value was associated with a 13% higher risk of incident diabetes (HR: 1.13, 95% CI: 1.09-1.17, I2 = 0.0%). CONCLUSION: There is a bidirectional relationship between diabetes and pulmonary function. However, further investigations into whether dynamic changes in glycaemic levels before and shortly after diabetes onset mediate the deleterious effects on pulmonary function, or vice versa, are now required.

12.
FEMS Microbiol Lett ; 367(17)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32821904

RESUMO

Phytochromes are a class of photoreceptors found in plants and in some fungi, cyanobacteria, and photoautotrophic and heterotrophic bacteria. Although phytochromes have been structurally characterized in some bacteria, their biological and ecological roles in magnetotactic bacteria remain unexplored. Here, we describe the biochemical characterization of recombinant bacteriophytochrome (BphP) from magnetotactic bacteria Magnetospirillum magneticum AMB-1 (MmBphP). The recombinant MmBphP displays all the characteristic features, including the property of binding to biliverdin (BV), of a genuine phytochrome. Site-directed mutagenesis identified that cysteine-14 is important for chromophore covalent binding and photoreversibility. Arginine-240 and histidine-246 play key roles in binding to BV. The N-terminal photosensory core domain of MmBphP lacking the C-terminus found in other phytochromes is sufficient to exhibit the characteristic red/far-red-light-induced fast photoreversibility of phytochromes. Moreover, our results showed MmBphP is involved in the phototactic response, suggesting its conservative role as a stress protectant. This finding provided us a better understanding of the physiological function of this group of photoreceptors and photoresponse of magnetotactic bacteria.

13.
Appl Microbiol Biotechnol ; 104(18): 7927-7941, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32780289

RESUMO

Light-oxygen-voltage (LOV) proteins are ubiquitous photoreceptors that can interact with other regulatory proteins and then mediate their activities, which results in cellular adaptation and subsequent physiological changes. Upon blue-light irradiation, a conserved cysteine (Cys) residue in LOV covalently binds to flavin to form a flavin-Cys adduct, which triggers a subsequent cascade of signal transduction and reactions. We found a group of natural Cys-less LOV-like proteins in magnetotactic bacteria (MTB) and investigated its physiological functions by conducting research on one of these unusual LOV-like proteins, Amb2291, in Magnetospirillum magneticum. In-frame deletion of amb2291 or site-directive substitution of alanine-399 for Cys mutants impaired the protective responses against hydrogen peroxide, thereby causing stress and growth impairment. Consequently, gene expression and magnetosome formation were affected, which led to high sensitivity to oxidative damage and defective phototactic behaviour. The purified wild-type and A399C-mutated LOV-like proteins had similar LOV blue-light response spectra, but Amb2291A399C exhibited a faster reaction to blue light. We especially showed that LOV-like protein Amb2291 plays a role in magnetosome synthesis and resistance to oxidative stress of AMB-1 when this bacterium was exposed to red light and hydrogen peroxide. This finding expands our knowledge of the physiological function of this widely distributed group of photoreceptors and deepens our understanding of the photoresponse of MTB. KEY POINTS: • We found a group of Cys-less light-oxygen-voltage (LOV) photoreceptors in magnetotactic bacteria, which prompted us to study the light-response and biological roles of these proteins in these non-photosynthetic bacteria. • The Cys-less LOV-like protein participates in the light-regulated signalling pathway and improves resistance to oxidative damage and magnetic crystal biogenesis in Magnetospirillum magneticum. • This result will contribute to our understanding of the structural and functional diversity of the LOV-like photoreceptor and help us understand the complexity of light-regulated model organisms.

14.
Methods Mol Biol ; 2205: 179-199, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32809200

RESUMO

Phytobricks are standardized DNA parts for plants that can be assembled hierarchically into transcriptional units and, subsequently, into multigene constructs. Phytobricks each contain the sequences of one or more functional elements that comprise eukaryotic transcription units, with sequence features that enable them to be used interchangeably in one-step cloning reactions to facilitate combinatorial assembly. The simplicity and efficiency of this one-step reaction has enabled Phytobrick assembly to be miniaturized and automated on liquid handing platforms. In this method, we describe how to design and construct new Phytobricks as well as how to assemble them in both manual and nanoscale automated one-step reactions. Finally, we describe a high-throughput method for sequence verification of assembled plasmids.

15.
Nucleic Acids Res ; 48(21): 11845-11856, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-32856047

RESUMO

Promoters serve a critical role in establishing baseline transcriptional capacity through the recruitment of proteins, including transcription factors. Previously, a paucity of data for cis-regulatory elements in plants meant that it was challenging to determine which sequence elements in plant promoter sequences contributed to transcriptional function. In this study, we have identified functional elements in the promoters of plant genes and plant pathogens that utilize plant transcriptional machinery for gene expression. We have established a quantitative experimental system to investigate transcriptional function, investigating how identity, density and position contribute to regulatory function. We then identified permissive architectures for minimal synthetic plant promoters enabling the computational design of a suite of synthetic promoters of different strengths. These have been used to regulate the relative expression of output genes in simple genetic devices.

16.
Micromachines (Basel) ; 11(7)2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32605313

RESUMO

With the rapid commercialization of fifth generation (5G) technology in the world, the market demand for radio frequency (RF) filters continues to grow. Acoustic wave technology has been attracting great attention as one of the effective solutions for achieving high-performance RF filter operations while offering low cost and small device size. Compared with surface acoustic wave (SAW) resonators, bulk acoustic wave (BAW) resonators have more potential in fabricating high- quality RF filters because of their lower insertion loss and better selectivity in the middle and high frequency bands above 2.5 GHz. Here, we provide a comprehensive review about BAW resonator researches, including materials, structure designs, and characteristics. The basic principles and details of recently proposed BAW resonators are carefully investigated. The materials of poly-crystalline aluminum nitride (AlN), single crystal AlN, doped AlN, and electrode are also analyzed and compared. Common approaches to enhance the performance of BAW resonators, suppression of spurious mode, low temperature sensitivity, and tuning ability are introduced with discussions and suggestions for further improvement. Finally, by looking into the challenges of high frequency, wide bandwidth, miniaturization, and high power level, we provide clues to specific materials, structure designs, and RF integration technologies for BAW resonators.

17.
Theranostics ; 10(17): 7730-7746, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32685016

RESUMO

Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease affecting premature infants. Mounting evidence supports the therapeutic effect of melatonin on NEC, although the underlying mechanisms remain unclear. Methods: NEC was induced in 10-day-old C57BL/6 pups via hypoxia and gavage feeding of formula containing enteric bacteria, and then, mice received melatonin, melatonin + recombinant IL-17, melatonin + anti-CD25 monoclonal antibody, melatonin + Ex-527, or melatonin + Compound C treatment. Control mice were left with their dams to breastfeed and vehicle-treated NEC pups were used as controls for treatment. Ileal tissues were collected from mice and analyzed by histopathology, immunoblotting, and flow cytometry. FITC-labeled dextran was administered to all surviving pups to evaluate gut barrier function by fluorometry. We used molecular biology and cell culture approaches to study the related mechanisms in CD4+ T cells from umbilical cord blood. Results: We demonstrated that melatonin treatment ameliorates disease in an NEC mouse model in a manner dependent on improved intestinal Th17/Treg balance. We also showed that melatonin blocks the differentiation of pathogenic Th17 cells and augments the generation of protective Treg cells in vitro. We further demonstrated that the Th17/Treg balance is influenced by melatonin through activation of AMPK in the intestine, in turn promoting SIRT1 activation and stabilization. Conclusions: These results demonstrate that melatonin-induced activation of AMPK/SIRT1 signaling regulates the balance between Th17 and Treg cells and that therapeutic strategies targeting the Th17/Treg balance via the AMPK/SIRT1 pathway might be beneficial for the treatment of NEC.

18.
Proc Natl Acad Sci U S A ; 117(26): 15293-15304, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32541062

RESUMO

Organisms possess photoperiodic timing mechanisms to detect variations in day length and temperature as the seasons progress. The nature of the molecular mechanisms interpreting and signaling these environmental changes to elicit downstream neuroendocrine and physiological responses are just starting to emerge. Here, we demonstrate that, in Drosophila melanogaster, EYES ABSENT (EYA) acts as a seasonal sensor by interpreting photoperiodic and temperature changes to trigger appropriate physiological responses. We observed that tissue-specific genetic manipulation of eya expression is sufficient to disrupt the ability of flies to sense seasonal cues, thereby altering the extent of female reproductive dormancy. Specifically, we observed that EYA proteins, which peak at night in short photoperiod and accumulate at higher levels in the cold, promote reproductive dormancy in female D. melanogaster Furthermore, we provide evidence indicating that the role of EYA in photoperiodism and temperature sensing is aided by the stabilizing action of the light-sensitive circadian clock protein TIMELESS (TIM). We postulate that increased stability and level of TIM at night under short photoperiod together with the production of cold-induced and light-insensitive TIM isoforms facilitate EYA accumulation in winter conditions. This is supported by our observations that tim null mutants exhibit reduced incidence of reproductive dormancy in simulated winter conditions, while flies overexpressing tim show an increased incidence of reproductive dormancy even in long photoperiod.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Proteínas do Olho/metabolismo , Fotoperíodo , Estações do Ano , Temperatura , Animais , Proteínas de Drosophila/genética , Proteínas do Olho/genética , Regulação da Expressão Gênica/fisiologia , Reprodução
19.
ACS Appl Mater Interfaces ; 12(24): 27425-27432, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32466636

RESUMO

Adding an additive is one of the effective strategies to fine-tune active layer morphology and improve performance of organic solar cells. In this work, a binary additive 1,8-diiodooctane (DIO) and 2,6-dimethoxynaphthalene (DMON) to optimize the morphology of PBDB-T:TTC8-O1-4F-based devices is reported. With the binary additive, a power conversion efficiency (PCE) of 13.22% was achieved, which is higher than those of devices using DIO (12.05%) or DMON (11.19%) individually. Comparison studies demonstrate that DIO can induce the acceptor TTC8-O1-4F to form ordered packing, while DMON can inhibit excessive aggregation of the donor and acceptor. With the synergistic effect of these two additives, the PBDB-T:TTC8-O1-4F blend film with DIO and DMON exhibits a suitable phase separation and crystallite size, leading to a high short-circuit current density (Jsc) of 23.04 mA·cm-2 and a fill factor of 0.703 and thus improved PCE.

20.
J Sleep Res ; 29(4): e13046, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32293774

RESUMO

There is now increasing evidence demonstrating that obstructive sleep apnea (OSA) contributes to microvascular disorder. However, whether OSA is associated with impaired coronary flow reserve is still unclear. Therefore, we conducted this systematic review and meta-analysis to summarize current evidence. In a systematic review, PubMed, Embase, the Cochrane Library and Web of Science were searched; five observational studies fulfilled the selection criteria and were included in this study. Data were extracted from selected studies and meta-analysis was performed using random-effects modelling. In all, 829 OSA patients and 507 non-OSA subjects were included and assessed for coronary flow reserve (CFR), the clinical indicator of coronary microvascular dysfunction (CMD). For all studies, OSA was significantly associated with reduced CFR. The pooled weighted mean difference (WMD) of CFR was -0.78 (95% confidence interval [CI] -1.25 to -0.32, p ï¼œ 0.001, I2  = 84.4%). The difference in the apnea-hypopnea index (AHI) between studies can explain 89% of heterogeneity (coef = -0.05, 95% CI -0.12 to 0.02, p = .078) in a meta-regression, indicating the CFR tended to negatively correlate with severity of OSA. The Egger regression test did not show statistical significance (p = .49). In conclusion, there are plausible biological mechanisms linking OSA and CMD, and the preponderance of evidence from this systematic review suggests that OSA, especially severe OSA, is associated with reduced CFR. Future studies are warranted to further delineate the exact role of OSA in CMD occurrence and development in a prospective setting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...