Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Artigo em Inglês | MEDLINE | ID: mdl-32530502


Sodium metal is a promising anode, but uneven Na deposition with a dendrite growth seriously impedes its application. Herein, a fibrous hydroxylated MXene/carbon nanotubes (h-Ti3 C2 /CNTs) composite is designed as a scaffold for dendrite-free Na metal electrodes. This composite displays fast Na+ /electron transport kinetics and good thermal conductivity and mechanical properties. The h-Ti3 C2 contains abundant sodiophilic functional groups, which play a significant role in inducing homogeneous nucleation of Na. Meanwhile, CNTs provide high tensile strength and ease of film-forming. As a result, h-Ti3 C2 /CNTs exhibit a high average Coulombic efficiency of 99.2 % and no dendrite after 1000 cycles. The h-Ti3 C2 /CNTs/Na based symmetric cells show a long lifespan over 4000 h at 1.0 mA cm-2 with a capacity of 1.0 mAh cm-2 . Furthermore, Na-O2 batteries with a h-Ti3 C2 /CNTs/Na anode exhibit a low potential gap of 0.11 V after an initial 70 cycles.

Oncol Lett ; 18(6): 5959-5967, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31788070


Despite advancements in treatment regimens, the mortality rate of patients with oral tongue squamous cell carcinoma (OTSCC) is high. In addition, the signaling pathways and oncoproteins involved in OTSCC progression remain largely unknown. Therefore, the aim of the present study was to identify specific prognostic marker for patients at a high risk of developing OTSCC. The present study used four original microarray datasets to identify the key candidate genes involved in OTSCC pathogenesis. Expression profiles of 93 OTSCC tissues and 76 normal tissues from GSE9844, GSE13601, GSE31056 and GSE75538 datasets were investigated. Differentially expressed genes (DEGs) were determined, and gene ontology enrichment and gene interactions were analyzed. The four GSE datasets reported five upregulated and six downregulated DEGs. Five upregulated genes (matrix metalloproteinase 1, 3, 10 and 12 and laminin subunit gamma 2) were localized in the extracellular region of cells and were associated with extracellular matrix disassembly. Furthermore, analysis for The Cancer Genome Atlas database revealed that the aforementioned five upregulated genes were also highly expressed in OTSCC and head and neck squamous cell carcinoma tissues. These results demonstrated that the five upregulated genes may be considered as potential prognostic biomarkers of OTSCC and may serve at understanding OTSCC progression. Upregulated DEGs may therefore represent valuable therapeutic targets to prevent or control OTSCC pathogenesis.

Chem Sci ; 10(15): 4306-4312, 2019 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-31057757


All-solid-state sodium batteries have great potential for large-scale energy storage applications. However, constructing a compatible Na anode/solid-state electrolyte (SSE) interface is still challenging because most SSEs are unstable toward Na metal. A succinonitrile (SN) SSE shows high room-temperature ionic conductivity (10-3 S cm-1) but easily deteriorates if in contact with Na metal, leading to continuously increased interfacial resistance. Here we present an extremely simple approach to introduce a compact NaF-rich interphase on a Na surface via chemical reactions between fluoroethylene carbonate-Na+ and Na metal, resulting in a compatible Na anode/SN-based electrolyte interface. The in situ formed NaF-rich interphase can not only prevent side reactions between the SN-based electrolyte and Na anode but also regulate the uniform deposition of dendrite-free Na. As a result, the symmetric cells show a low overpotential of 150 mV after cycling for 4000 h. Furthermore, all-solid-state Na-CO2 batteries (4Na + 3CO2 ↔ 2Na2CO3 + C) with the compatible interface can run for 50 cycles with a small overpotential increase of 0.33 V. This work provides a promising method to build a stable interface that enables the use of an SSE which is unstable toward Na in Na metal batteries.

Sensors (Basel) ; 18(12)2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30486408


Environment perception is one of the major issues in autonomous driving systems. In particular, effective and robust drivable road region detection still remains a challenge to be addressed for autonomous vehicles in multi-lane roads, intersections and unstructured road environments. In this paper, a computer vision and neural networks-based drivable road region detection approach is proposed for fixed-route autonomous vehicles (e.g., shuttles, buses and other vehicles operating on fixed routes), using a vehicle-mounted camera, route map and real-time vehicle location. The key idea of the proposed approach is to fuse an image with its corresponding local route map to obtain the map-fusion image (MFI) where the information of the image and route map act as complementary to each other. The information of the image can be utilized in road regions with rich features, while local route map acts as critical heuristics that enable robust drivable road region detection in areas without clear lane marking or borders. A neural network model constructed upon the Convolutional Neural Networks (CNNs), namely FCN-VGG16, is utilized to extract the drivable road region from the fused MFI. The proposed approach is validated using real-world driving scenario videos captured by an industrial camera mounted on a testing vehicle. Experiments demonstrate that the proposed approach outperforms the conventional approach which uses non-fused images in terms of detection accuracy and robustness, and it achieves desirable robustness against undesirable illumination conditions and pavement appearance, as well as projection and map-fusion errors.