Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Artigo em Inglês | MEDLINE | ID: mdl-36166530


Neural language models are widely used; however, their model parameters often need to be adapted to the specific domains and tasks of an application, which is time- and resource-consuming. Thus, adapters have recently been introduced as a lightweight alternative for model adaptation. They consist of a small set of task-specific parameters with a reduced training time and simple parameter composition. The simplicity of adapter training and composition comes along with new challenges, such as maintaining an overview of adapter properties and effectively comparing their produced embedding spaces. To help developers overcome these challenges, we provide a twofold contribution. First, in close collaboration with NLP researchers, we conducted a requirement analysis for an approach supporting adapter evaluation and detected, among others, the need for both intrinsic (i.e., embedding similarity- based) and extrinsic (i.e., prediction-based) explanation methods. Second, motivated by the gathered requirements, we designed a flexible visual analytics workspace that enables the comparison of adapter properties. In this paper, we discuss several design iterations and alternatives for interactive, comparative visual explanation methods. Our comparative visualizations show the differences in the adapted embedding vectors and prediction outcomes for diverse human-interpretable concepts (e.g., person names, human qualities). We evaluate our workspace through case studies and show that, for instance, an adapter trained on the language debiasing task according to context-0 (decontextualized) embeddings introduces a new type of bias where words (even gender-independent words such as countries) become more similar to female- than male pronouns. We demonstrate that these are artifacts of context-0 embeddings, and the adapter effectively eliminates the gender information from the contextualized word representations.

Artigo em Inglês | MEDLINE | ID: mdl-34478370


Multiscale visualizations are typically used to analyze multiscale processes and data in various application domains, such as the visual exploration of hierarchical genome structures in molecular biology. However, creating such multiscale visualizations remains challenging due to the plethora of existing work and the expression ambiguity in visualization research. Up to today, there has been little work to compare and categorize multiscale visualizations to understand their design practices. In this work, we present a structured literature analysis to provide an overview of common design practices in multiscale visualization research. We systematically reviewed and categorized 122 published journal or conference papers between 1995 and 2020. We organized the reviewed papers in a taxonomy that reveals common design factors. Researchers and practitioners can use our taxonomy to explore existing work to create new multiscale navigation and visualization techniques. Based on the reviewed papers, we examine research trends and highlight open research challenges.

IEEE Trans Vis Comput Graph ; 27(2): 517-527, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33048714


The overview-driven visual analysis of large-scale dynamic graphs poses a major challenge. We propose Multiscale Snapshots, a visual analytics approach to analyze temporal summaries of dynamic graphs at multiple temporal scales. First, we recursively generate temporal summaries to abstract overlapping sequences of graphs into compact snapshots. Second, we apply graph embeddings to the snapshots to learn low-dimensional representations of each sequence of graphs to speed up specific analytical tasks (e.g., similarity search). Third, we visualize the evolving data from a coarse to fine-granular snapshots to semi-automatically analyze temporal states, trends, and outliers. The approach enables us to discover similar temporal summaries (e.g., reoccurring states), reduces the temporal data to speed up automatic analysis, and to explore both structural and temporal properties of a dynamic graph. We demonstrate the usefulness of our approach by a quantitative evaluation and the application to a real-world dataset.

Artigo em Inglês | MEDLINE | ID: mdl-30136979


Understanding the movement patterns of collectives, such as flocks of birds or fish swarms, is an interesting open research question. The collectives are driven by mutual objectives or react to individual direction changes and external influence factors and stimuli. The challenge in visualizing collective movement data is to show space and time of hundreds of movements at the same time to enable the detection of spatiotemporal patterns. In this paper, we propose MotionRugs, a novel space efficient technique for visualizing moving groups of entities. Building upon established space-partitioning strategies, our approach reduces the spatial dimensions in each time step to a one-dimensional ordered representation of the individual entities. By design, MotionRugs provides an overlap-free, compact overview of the development of group movements over time and thus, enables analysts to visually identify and explore group-specific temporal patterns. We demonstrate the usefulness of our approach in the field of fish swarm analysis and report on initial feedback of domain experts from the field of collective behavior.