Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Mais filtros

Base de dados
Intervalo de ano de publicação
Int J Nanomedicine ; 14: 3471-3490, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31190805


Background: Zinc-doped hydroxyapatite has been proposed as a graft biomaterial for bone regeneration. However, the effect of zinc on osteoconductivity is still controversial, since the release and resorption of calcium, phosphorus, and zinc in graft-implanted defects have rarely been studied. Methods: Microspheres containing alginate and either non-doped carbonated hydroxyapatite (cHA) or nanocrystalline 3.2 wt% zinc-doped cHA (Zn-cHA) were implanted in critical-sized calvarial defects in Wistar rats for 1, 3, and 6 months. Histological and histomorphometric analyses were performed to evaluate the volume density of newly formed bone, residual biomaterial, and connective tissue formation. Biomaterial degradation was characterized by transmission electron microscopy (TEM) and synchrotron radiation-based X-ray microfluorescence (SR-µXRF), which enabled the elemental mapping of calcium, phosphorus, and zinc on the microsphere-implanted defects at 6 months post-implantation. Results: The bone repair was limited to regions close to the preexistent bone, whereas connective tissue occupied the major part of the defect. Moreover, no significant difference in the amount of new bone formed was found between the two microsphere groups. TEM analysis revealed the degradation of the outer microsphere surface with detachment of the nanoparticle aggregates. According to SR-µXRF, both types of microspheres released high amounts of calcium, phosphorus, and zinc, distributed throughout the defective region. The cHA microsphere surface strongly adsorbed the zinc from organic constituents of the biological fluid, and phosphorus was resorbed more quickly than calcium. In the Zn-cHA group, zinc and calcium had similar release profiles, indicating a stoichiometric dissolution of these elements and non-preferential zinc resorption. Conclusions: The nanometric size of cHA and Zn-cHA was a decisive factor in accelerating the in vivo availability of calcium and zinc. The high calcium and zinc accumulation in the defect, which was not cleared by the biological medium, played a critical role in inhibiting osteoconduction and thus impairing bone repair.

Alginatos/química , Regeneração Óssea , Cálcio/metabolismo , Durapatita/química , Microesferas , Nanopartículas/química , Zinco/química , Zinco/metabolismo , Animais , Materiais Biocompatíveis/química , Disponibilidade Biológica , Regeneração Óssea/efeitos dos fármacos , Carbonatos/química , Morte Celular , Linhagem Celular , Sobrevivência Celular , Feminino , Camundongos , Nanopartículas/ultraestrutura , Ratos Wistar , Crânio/fisiologia , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
Clin Oral Implants Res ; 28(8): 893-901, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27317626


OBJECTIVE: The aim of this preclinical study was to compare histologically and histomorphometrically both sandblasted/acid-etched implant surfaces with or without maintained in an isotonic solution of 0.9% sodium chloride in early stages of osseointegration. MATERIAL AND METHODS: Both implant surfaces were composed of a titanium/aluminum/vanadium alloy (Ti6Al4V-ELI), but they had different surface chemistries: sandblasted/acid-etched titanium surface (FN) or sandblasted/acid-etched surface maintained in an isotonic solution of 0.9% sodium chloride (FA). The surface morphology, topography and chemistry were evaluated by scanning electron microscopy (SEM), confocal microscopy (CM) and X-ray photoelectron spectroscopy (XPS), respectively. Dynamic contact angle (DCA) was employed for wettability evaluation. One implant from each group was placed in the left tibia of twenty healthy, skeletally mature Santa Ines sheep (n = 5). Bone area (BA) and bone-to-implant contact (BIC) were performed on thin sections (30 µm) at 7, 14, 21 and 28 days after implant installation. RESULTS: Despite the roughness and morphology similarities between the groups, at the XPS evaluation, the FA group presented 2.3 times less carbon on the surface (FN: 27.3% and FA: 11.6%), sharply enhanced hydrophilicity and significantly enhanced BA and BIC at 14, 21 and 28 days of healing (P < 0.05) compared with the FN. CONCLUSION: The data suggest that the hydrophilic FA accelerates the BA apposition and BIC interface around the implants during early stages of bone formation, providing highest degree of osseointegration.

Interface Osso-Implante/patologia , Osseointegração , Tíbia/cirurgia , Titânio , Animais , Implantação Dentária Endo-Óssea/métodos , Implantes Dentários , Interações Hidrofóbicas e Hidrofílicas , Microscopia Confocal , Microscopia Eletrônica de Varredura , Ovinos , Propriedades de Superfície , Tíbia/patologia
J Biomed Mater Res B Appl Biomater ; 104(2): 274-82, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25716009


Various synthetic bone substitutes have been developed to reconstruct bone defects. One of the most prevalent ceramics in bone treatment is hydroxyapatite (HA) that is a useful material as bone substitute, however, with a low rate of biodegradation. Its structure allows isomorphic cationic and anionic substitutions to be easily introduced, which can alter the crystallinity, morphology, biocompatibility, and osteoconductivity. The objective of this study was to investigate the in vitro and in vivo biological responses to strontium-containing nanostructured carbonated HA/sodium alginate (SrCHA) spheres (425<ϕ <600 µm) that were used for sinus lifts in rabbits using nanostructured carbonated HA/sodium alginate (CHA) as a reference. Cytocompatibility was determined using a multiparametric assay after exposing murine preosteoblasts to the extracts of these materials. Twelve male and female rabbits underwent bilateral sinus lift procedures and were divided into two groups (CHA or SrCHA) and in two experimental periods (4 and 12 weeks), for microscopic and histomorphometric analyses. The in vitro test revealed the overall viability of the cells exposed to the CHA and SrCHA extracts; thus, these extracts were considered cytocompatible, which was confirmed by three different parameters in the in vitro tests. The histological analysis showed chronic inflammation with a prevalence of macrophages around the CHA spheres after 4 weeks, and this inflammation decreased after 12 weeks. Bone formation was observed in both groups, and smaller quantities of SrCHA spheres were observed after 12 weeks, indicating greater bioresorption of SrCHA than CHA. SrCHA spheres are biocompatible and osteoconductive and undergo bioresorption earlier than CHA spheres.

Alginatos , Substitutos Ósseos , Cavidades Cranianas/cirurgia , Durapatita , Nanoestruturas/química , Estrôncio , Alginatos/química , Alginatos/farmacologia , Animais , Regeneração Óssea/efeitos dos fármacos , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Linhagem Celular , Cavidades Cranianas/lesões , Cavidades Cranianas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Durapatita/química , Durapatita/farmacologia , Feminino , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Masculino , Teste de Materiais/métodos , Camundongos , Coelhos , Estrôncio/química , Estrôncio/farmacologia
J Mater Sci Mater Med ; 26(4): 166, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25791461


Hydroxyapatite (HA) has been investigated as a delivery system for antimicrobial and antibacterial agents to simultaneously stimulate bone regeneration and prevent infection. Despite evidence supporting the bactericidal efficiency of these HA carriers, few studies have focused on the effect of this association on bone regeneration. In this work, we evaluated the physico-chemical properties of hydroxyapatite microspheres loaded with chlorhexidine (CHX) at two different concentrations, 0.9 and 9.1 µgCHX/cm2 HA, and characterized their effects on in vitro osteoblast viability and bone regeneration. Ultraviolet-visible spectroscopy, scanning and transmission electron microscopy associated with energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy were used to characterize the association of CHX and HA nanoparticles. The high CHX loading dose induced formation of organic CHX plate-like aggregates on the HA surface, whereas a Langmuir film was formed at the low CHX surface concentration. Quantitative evaluation of murine osteoblast viability parameters, including adhesion, mitochondrial activity and membrane integrity of cells exposed to HA/CHX extracts, revealed a cytotoxic effect for both loading concentrations. Histomorphological analysis upon implantation into the dorsal connective tissues and calvaria of rats for 7 and 42 days showed that the high CHX concentration induced the infiltration of inflammatory cells, resulting in retarded bone growth. Despite a strong decrease in in vitro cell viability, the low CHX loading dose did not impair the biocompatibility and osteoconductivity of HA during bone repair. These results indicate that high antimicrobial doses may activate a strong local inflammatory response and disrupt the long-term osteoconductive properties of CHX-HA delivery systems.

Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Substitutos Ósseos/administração & dosagem , Clorexidina/administração & dosagem , Implantes de Medicamento/administração & dosagem , Osteoblastos/fisiologia , Osteogênese/fisiologia , Células 3T3 , Animais , Antibacterianos/administração & dosagem , Antibacterianos/química , Substitutos Ósseos/síntese química , Cápsulas/administração & dosagem , Cápsulas/síntese química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Clorexidina/química , Terapia Combinada , Difusão , Implantes de Medicamento/química , Durapatita/administração & dosagem , Durapatita/química , Masculino , Camundongos , Osteoblastos/citologia , Osteogênese/efeitos dos fármacos , Ratos , Ratos Wistar
J Mater Sci Mater Med ; 24(6): 1455-63, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23606217


This study investigates the long-term biocompatibility of 0.5 % zinc-containing hydroxyapatite compared with hydroxyapatite. Spheres (425 < ∅ < 550) of both materials were produced by extrusion of ceramic slurry in calcium chloride and characterized by FTIR, XRD, XRF and SEM. Fifteen White New Zealand rabbits were submitted to general anesthesia, and an perforation (2 mm), was made in each tibia, one for zinc-containing hydroxyapatite sphere implantation and one for hydroxyapatite sphere implantation. After 26, 52 and 78 weeks, the animals were euthanized, and the fragment containing the biomaterial was harvested. A 30-50 µm section was obtained for histological analysis in bright field and polarized light. SEM images revealed similar morphologies between the tested biomaterials. Histological analysis showed that there was no difference between the test groups. The morphometric analysis, however, indicates that there was a greater absorption. The materials are biocompatible, promote osteogenesis and that the zinc-containing hydroxyapatite microspheres were absorbed more quickly.

Substitutos Ósseos/síntese química , Substitutos Ósseos/uso terapêutico , Durapatita/química , Durapatita/uso terapêutico , Fraturas da Tíbia/terapia , Zinco/química , Zinco/uso terapêutico , Animais , Feminino , Estudos Longitudinais , Masculino , Teste de Materiais , Coelhos , Fraturas da Tíbia/patologia , Resultado do Tratamento
J Oral Maxillofac Surg ; 68(7): 1631-8, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20430505


PURPOSE: The objective of the present study was to evaluate the biomechanical fixation and bone-to-implant contact (BIC) of plateau root form implants of varied surfaces. MATERIALS AND METHODS: Plateau root form implants, 3.5 mm in diameter, 8 mm in length, with 4 surfaces (n = 16 each)--machined, alumina-blasted/acid-etched, alumina-blasted/acid-etched plus nanothickness bioceramic coating, and plasma-sprayed calcium-phosphate--were used. They were bilaterally placed at the distal femur of 16 New Zealand rabbits and remained in place for 2 and 4 weeks in vivo. After euthanizing the rabbits, the implants were subjected to torque to interface fracture and were subsequently processed as nondecalcified approximately 30-microm-thickness slides for histomorphologic analysis and BIC determination. Statistical analysis was performed using analysis of variance at the 95% level of significance, considering implantation time and implant surface as independent variables and the torque-to-interface fracture and BIC as dependent variables. RESULTS: The torque-to-interface fracture was significantly affected by the implant surface (P < .001) but was not affected by the implantation time (P > .20). The implantation time and implant surface had significant effects on the BIC (P < .04 and P < .001, respectively). The greatest torque-to-interface fracture and BIC was observed for the plasma-sprayed calcium-phosphate. CONCLUSION: The implant surface significantly influenced early bone healing around plateau root form implants.

Implantação Dentária Endo-Óssea/instrumentação , Implantes Dentários , Planejamento de Prótese Dentária , Osseointegração , Animais , Fenômenos Biomecânicos , Fêmur/cirurgia , Coelhos , Estresse Mecânico , Propriedades de Superfície , Torque