Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 623: 294-305, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35594588

RESUMO

Tissue factor (TF) is a membrane protein involved in blood coagulation. TF initiates a cascade of proteolytic reactions, ultimately leading to the formation of a blood clot. The first reaction consists of the binding of the coagulation factor VII and its conversion to the activated form, FVIIa. Here, we combined experimental, i.e. quartz crystal microbalance with dissipation monitoring and neutron reflectometry, and computational, i.e. molecular dynamics (MD) simulation, methods to derive a complete structural model of TF and TF/FVIIa complex in a lipid bilayer. This model shows that the TF transmembrane domain (TMD), and the flexible linker connecting the TMD to the extracellular domain (ECD), define the location of the ECD on the membrane surface. The average orientation of the ECD relative to the bilayer surface is slightly tilted towards the lipid headgroups, a conformation that we suggest is promoted by phosphatidylserine lipids, and favours the binding of FVIIa. On the other hand, the formation of the TF/FVIIa complex induces minor changes in the TF structure, and reduces the conformational freedom of both TF and FVIIA. Altogether we describe the protein-protein and protein-lipid interactions favouring blood coagulation, but also instrumental to the development of new drugs.


Assuntos
Fator VIIa , Tromboplastina , Fator VIIa/química , Fator VIIa/metabolismo , Bicamadas Lipídicas/química , Modelos Estruturais , Simulação de Dinâmica Molecular , Tromboplastina/química , Tromboplastina/metabolismo
2.
ACS Appl Mater Interfaces ; 14(17): 19505-19514, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35442014

RESUMO

The evaluation of the mechanism of nanoparticle (NP)/surfactant complex adsorption at the critical oil/water interface was studied. A sophisticated technique (neutron reflectometry) was used to give a unique insight on NP/oil interactions in oil recovery systems. Herein, the adsorption of two modified alumina NPs with different degrees of hydrophobicity [hydrophilic = 2-[2-(2-methoxyethoxy)ethoxy]acetic acid and hydrophobic = octanoic acid (OCT)] stabilized with two different surfactants were studied at the oil/water interface. A thin layer of deuterated (D) and hydrogenated (H) hexadecane (contrast matching silicon substrate) oil was formed on a silicon block by a spin coating freeze process. The distribution of the NPs across the oil/water interface with the CTAB surfactant is similar between the two systems. NPs coated with CTAB have more affinity toward the oil/water interface, which explains the oil recovery increase by around 5% when flooding the core with the OCT-NP/CTAB system compared to the surfactant flooding alone. These results suggest that the NP/surfactant complexes can have potential usage in EOR recovery applications.

3.
J Colloid Interface Sci ; 613: 297-310, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35042030

RESUMO

HYPOTHESIS: The milder interaction with biosystems makes the zwitterionic surfactants an important class of surfactants, and they are widely used in biological applications and in personal care formulations. An important aspect of those applications is their strong synergistic interaction with anionic surfactants. It is anticipated that the strong interaction will significantly affect the adsorption and self-assembly properties. EXPERIMENTS: Surface tension, ST, neutron reflectivity, NR, and small angle neutron scattering, SANS, have been used here to explore the synergistic mixing in micelles and at the air-water interface for the zwitterionic surfactant, dodecyldimethylammonium propanesulfonate, C12SB, and the anionic surfactants, alkyl ester sulfonate, AES, in the absence and presence of electrolyte, 0.1 M NaCl. FINDINGS: At the air-water interface the asymmetry of composition in the strong synergistic interaction and the changes with added electrolyte and anionic surfactant structure reflect the relative contributions of the electrostatic and steric interactions to the excess free energy of mixing. In the mixed micelles the synergy is less pronounced and indicates less severe packing constraints. The micelle structure is predominantly globular to elongated, and shows a pronounced micellar growth with composition which depends strongly upon the nature of the anionic surfactant and the addition of electrolyte.


Assuntos
Micelas , Água , Eletricidade Estática , Tensão Superficial , Tensoativos
4.
Langmuir ; 38(5): 1725-1737, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35081310

RESUMO

We have prepared a series of ampholytic polymer films, using a self-initiated photografting and photopolymerization (SI-PGP) method to sequentially polymerize first anionic (deuterated methacrylic acid (dMAA)) and thereafter cationic (2-aminoethyl methacrylate (AEMA)) monomers to investigate the SI-PGP grafting process. Dry films were investigated by ellipsometry, X-ray, and neutron reflectometry, and their swelling was followed over a pH range from 4.5 to 10.5 with spectroscopic ellipsometry. The deuterated monomer allows us to separate the distributions of the two components by neutron reflectometry. Growth of both polymers proceeds via grafting of solution-polymerized fragments to the surface, and also the second layer is primarily grafted to the substrate and not as a continuation of the existing chains. The polymer films are stratified, with one layer of near 1:1 composition and the other layer enriched in one component and located either above or below the former layer. The ellipsometry results show swelling transitions at low and high pH but with no systematic variation in the pH values where these transitions occur. The results suggest that grafting density in SI-PGP-prepared homopolymers could be increased via repeated polymerization steps, but that this process does not necessarily increase the average chain length.

5.
J Innate Immun ; 14(5): 418-432, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34937021

RESUMO

Proteolytic cleavage of thrombin generates C-terminal host defense peptides exerting multiple immunomodulatory effects in response to bacterial stimuli. Previously, we reported that thrombin-derived C-terminal peptides (TCPs) are internalized in monocytes and macrophages in a time- and temperature-dependent manner. In this study, we investigated which endocytosis pathways are responsible for the internalization of TCPs. Using confocal microscopy and flow cytometry, we show that both clathrin-dependent and clathrin-independent pathways are involved in the internalization of the prototypic TCP GKY25 in RAW264.7 and human monocyte-derived M1 macrophages, whereas the uptake of GKY25 in monocytic THP-1 cells is mainly dynamin-dependent. Internalized GKY25 was transported to endosomes and finally lysosomes, where it remained detectable for up to 10 h. Comparison of GKY25 uptake with that of the natural occurring TCPs HVF18 and FYT21 indicates that the pathway of TCP endocytosis is not only cell type-dependent but also depends on the length and composition of the peptide as well as the presence of LPS and bacteria. Finally, using neutron reflectometry, we show that the observed differences between HVF18 and the other 2 TCPs may be explained partially by differences in membrane insertion. Taken together, we show that TCPs are differentially internalized into monocytes and macrophages.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Monócitos , Peptídeos Catiônicos Antimicrobianos/metabolismo , Clatrina/metabolismo , Endocitose , Humanos , Macrófagos/metabolismo , Monócitos/metabolismo , Trombina/química , Trombina/metabolismo
6.
Case Rep Endocrinol ; 2021: 1776538, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34725573

RESUMO

Patients with hyperthyroidism or thyrotoxicosis present with an unspecific constellation of signs or symptoms such as palpitations, tremors, weight loss, or diarrhea. In some severe cases, hyperthyroidism can predispose patients to metabolic abnormalities and arrhythmias. Thyrotoxic periodic paralysis (TTP) is a rare, life-threatening complication or variant of hyperthyroidism associated with hypokalemia and muscle weakness that affects young Asian or Hispanic males between 20-40 years. TTP is reversible, and the management consists of beta-blockers, antithyroid therapy, and conservative potassium correction to prevent severe cardiovascular events such as ventricular arrhythmias with the improvement of transient muscle paralysis. We present a case of a 21-year-old Hispanic male complaining with symptoms of thyrotoxicosis, marked hypokalemia, and severe generalized muscle weakness. Physicians must be aware of this uncommon complication of thyrotoxicosis called thyrotoxic periodic paralysis (TTP) to avoid potassium overcorrection and all the endocrine associations with this pathology.

7.
Membranes (Basel) ; 11(7)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34357157

RESUMO

We showcase the combination of experimental neutron scattering data and molecular dynamics (MD) simulations for exemplary phospholipid membrane systems. Neutron and X-ray reflectometry and small-angle scattering measurements are determined by the scattering length density profile in real space, but it is not usually possible to retrieve this profile unambiguously from the data alone. MD simulations predict these density profiles, but they require experimental control. Both issues can be addressed simultaneously by cross-validating scattering data and MD results. The strengths and weaknesses of each technique are discussed in detail with the aim of optimizing the opportunities provided by this combination.

8.
J Colloid Interface Sci ; 597: 223-232, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33872879

RESUMO

The formation of surface multilayer structures, induced by the addition of multivalent counterions in dilute surfactant solutions, has been widely observed in a range of anionic surfactants. The phenomenon is associated with the ability to manipulate surface properties, especially in the promotion of enhanced surface wetting, and in the presence of an extensive near surface reservoir for rapid surface delivery of surfactant and other active components. HYPOTHESIS: In the single alkyl chain anionic surfactants, such as sodium dodecysulfate, SDS, sodium alkylethoxylsulfate, SAES, and alkylestersulfonate, AES, surface multilayer formation is promoted by trivalent counterions such as Al3+, and is generally not observed with divalent counterions, such as Ca2+ or with monovalent counterions. In the di-alkyl chain anionic surfactant, dodecylbenzenesulfonate, LAS, surface multilayer formation now occurs in the presence of divalent counterions. It is attributed to the closer proximity of a bulk lamellar phase, resulting in a greater tendency for surface multilayer formation, and hence should occur in other di-alkyl chain anionic surfactants. EXPERIMENTS: Aerosol-OT, AOT, is one of the most commonly used di-alkyl chain anionic surfactants, and is extensively used as an emulsifying, wetting and dispersing agent. This paper reports on predominantly neutron reflectivity, NR, measurements which explore the nature of surface multilayer formation of the sodium salt of AOT at the air-solution interface with the separate addition of Ca2+ and Al3+ counterions. FINDINGS: In the AOT concentration range 0.5 to 2.0 mM surface multilayer formation occurs at the air-solution interface with the addition of Ca2+ or Al3+ counterions. Although the evolution in the surface structure with surfactant and counterion concentration is broadly similar to those reported for SDS, SAES and AES, some notable differences occur. In particular the surfactant and counterion concentration thresholds for surface multilayer formation are higher for Ca2+ than for Al3+. The differences encountered reflect the greater affinity of the di-alkyl chain structure for lamellar formation, and how the surface packing is controlled in part by the headgroup structure and the associated counterion binding affinity.

9.
Commun Biol ; 4(1): 507, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33907308

RESUMO

B-cell lymphoma 2 (Bcl-2) proteins are the main regulators of mitochondrial apoptosis. Anti-apoptotic Bcl-2 proteins possess a hydrophobic tail-anchor enabling them to translocate to their target membrane and to shift into an active conformation where they inhibit pro-apoptotic Bcl-2 proteins to ensure cell survival. To address the unknown molecular basis of their cell-protecting functionality, we used intact human Bcl-2 protein natively residing at the mitochondrial outer membrane and applied neutron reflectometry and NMR spectroscopy. Here we show that the active full-length protein is entirely buried into its target membrane except for the regulatory flexible loop domain (FLD), which stretches into the aqueous exterior. The membrane location of Bcl-2 and its conformational state seems to be important for its cell-protecting activity, often infamously upregulated in cancers. Most likely, this situation enables the Bcl-2 protein to sequester pro-apoptotic Bcl-2 proteins at the membrane level while sensing cytosolic regulative signals via its FLD region.


Assuntos
Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Difração de Nêutrons/métodos , Proteínas Proto-Oncogênicas c-bcl-2/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Humanos , Conformação Proteica
10.
J Colloid Interface Sci ; 598: 193-205, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33901846

RESUMO

HYPOTHESIS: Antimicrobial peptides (AMPs) kill microorganisms by causing structural damage to bacterial membranes. Different microorganisms often require a different type and concentration of an AMP to achieve full microbial killing. We hypothesise that the difference is caused by different membrane structure and composition. EXPERIMENTS: Given the complexities of bacterial membranes, we have used monolayers of the binary DPPG/TMCL mixture to mimic the cytoplasmic membrane of Gram-positive bacteria and the binary DPPG/DPPE mixture to mimic the cytoplasmic membrane of Gram-negative bacteria, where DPPG, TMCL and DPPE stand for 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol), 1',3'-bis[1,2-dimyristoyl-sn-glycero-3-phospho]-sn-glycerol, and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine, respectively. A Langmuir trough was specially designed to control the spread lipid monolayers and facilitate neutron reflectivity measurements. FINDINGS: Surface pressure-area isotherm analysis revealed that all binary lipid systems mix non-ideally, but mixing is thermodynamically favoured. An increase in the surface pressure encourages demixing, resulting in phase separation and formation of clusters. Neutron reflectivity measurements were undertaken to study the binding of an antimicrobial peptide G(IIKK)4-I-NH2 (G4) to the binary DPPG/TMCL and DPPG/DPPE monolayer mixtures at the molar ratios of 6/4 and 3/7, respectively. The results revealed stronger binding and penetration of G4 to the DPPG/TMCL monolayer, indicating greater affinity of the antimicrobial peptide due to the electrostatic interaction and more extensive penetration into the more loosely packed lipid film. This work helps explain how AMPs attack different bacterial membranes, and the results are discussed in the context of other lipid models and antibacterial studies.


Assuntos
Lipídeos , Fosfatidiletanolaminas , Membrana Celular , Fosfatidilgliceróis , Proteínas Citotóxicas Formadoras de Poros , Eletricidade Estática
11.
Chembiochem ; 22(9): 1656-1667, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33411956

RESUMO

The increase in resistant bacterial strains necessitates the identification of new antimicrobial molecules. Antimicrobial peptides (AMPs) are an attractive option because of evidence that bacteria cannot easily develop resistance to AMPs. The peptaibols, a class of naturally occurring AMPs, have shown particular promise as antimicrobial drugs, but their development has been hindered by their mechanism of action not being clearly understood. To explore how peptaibols might interact with membranes, circular dichroism, vibrational circular dichroism, linear dichroism, Raman spectroscopy, Raman optical activity, neutron reflectivity and molecular dynamics simulations have been used to study a small library of peptaibol mimics, the Aib-rich peptides. All the peptides studied quickly partitioned and oriented in membranes, and we found evidence of chiral interactions between the phospholipids and membrane-embedded peptides. The protocols presented in this paper open new ground by showing how chiro-optical spectroscopies can throw light on the mechanism of action of AMPs.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Peptídeos Catiônicos Antimicrobianos/química , Dicroísmo Circular , Bicamadas Lipídicas/química , Peptaibols/química , Peptaibols/metabolismo , Fosfatidilcolinas/química , Estereoisomerismo
12.
J Colloid Interface Sci ; 585: 376-385, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33307306

RESUMO

Supported lipid bilayers (SLBs) are commonly used to investigate the structure and dynamics of biological membranes. Vesicle fusion is a widely exploited method to produce SLBs. However, this process becomes less favoured when the vesicles contain complex lipid mixtures, e.g. natural lipid extracts. In these cases, it is often necessary to change experimental parameters, such as temperature, to unphysiological values to trigger the SLB formation. This may induce lipid degradation and is also not compatible with including membrane proteins or other biomolecules into the bilayers. Here, we show that the peptide discs, ~10 nm discoidal lipid bilayers stabilized in solution by a self-assembled 18A peptide belt, can be used as precursors for SLBs. The characterizations by means of neutron reflectometry and attenuated total reflectance-FTIR spectroscopy show that SLBs were successfully formed both from synthetic lipid mixtures (surface coverage 90-95%) and from natural lipid mixtures (surface coverage ~85%). Traces of 18A peptide (below 0.02 M ratio) left at the support surface after the bilayer formation do not affect the SLB structure. Altogether, we demonstrate that peptide disc formation of SLBs is much faster than the SLB formation by vesicle fusion and without the need of altering any experimental variable from physiologically relevant values.


Assuntos
Bicamadas Lipídicas , Peptídeos , Temperatura
13.
J Colloid Interface Sci ; 586: 876-890, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33309145

RESUMO

HYPOTHESIS: The α-sulfo alkyl ester, AES, surfactants are a class of anionic surfactants which have potential for improved sustainable performance in a range of applications, and an important feature is their enhanced tolerance to precipitation in the presence of multivalent counterions. It is proposed that their adsorption properties can be adjusted substantially by changing the length of the shorter alkyl chain, that of the alkanol group in the ester. EXPERIMENTS: Surface tension and neutron reflectivity have been used to investigate the variation in the adsorption properties with the shorter alkyl chain length (methyl, ethyl and propyl), the impact of NaCl on the adsorption, the tendency to form surface multilayer structures in the presence of AlCl3, and the effects of mixing the methyl ester sulfonate with the ethyl and propyl ester sulfonates on the adsorption. FINDINGS: The variations in the critical micelle concentration, CMC, the adsorption isotherms, the saturation adsorption values, and the impact of NaCl illustrate the subtle influence of varying the shorter alkyl chain length of the surfactant. The non-ideal mixing of pairs of AES surfactants with different alkanol group lengths of the ester show that the extent of the non-ideality changes as the difference in the alkanol length increases. The surface multilayer formation observed in the presence of AlCl3 varies in a complex manner with the length of the short chain and for mixtures of surfactants with different chains lengths.

14.
ACS Appl Mater Interfaces ; 12(50): 55675-55687, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33259204

RESUMO

Antimicrobial peptides are promising alternatives to traditional antibiotics. A group of self-assembling lipopeptides was formed by attaching an acyl chain to the N-terminus of α-helix-forming peptides with the sequence Cx-G(IIKK)yI-NH2 (CxGy, x = 4-12 and y = 2). CxGy self-assemble into nanofibers above their critical aggregation concentrations (CACs). With increasing x, the CACs decrease and the hydrophobic interactions increase, promoting secondary structure transitions within the nanofibers. Antimicrobial activity, determined by the minimum inhibition concentration (MIC), also decreases with increasing x, but the MICs are significantly smaller than the CACs, suggesting effective bacterial membrane-disrupting power. Unlike conventional antibiotics, both C8G2 and C12G2 can kill Staphylococcus aureus and Escherichia coli after only minutes of exposure under the concentrations studied. C12G2 nanofibers have considerably faster killing dynamics and lower cytotoxicity than their nonaggregated monomers. Antimicrobial activity of peptide aggregates has, to date, been underexploited, and it is found to be a very promising mechanism for peptide design. Detailed evidence for the molecular mechanisms involved is provided, based on superresolution fluorescence microscopy, solid-state nuclear magnetic resonance, atomic force microscopy, neutron scattering/reflectivity, circular dichroism, and Brewster angle microscopy.


Assuntos
Anti-Infecciosos/química , Lipopeptídeos/química , Sequência de Aminoácidos , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Desenho de Fármacos , Escherichia coli/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Lipopeptídeos/metabolismo , Lipopeptídeos/farmacologia , Lipossomos/química , Lipossomos/metabolismo , Testes de Sensibilidade Microbiana , Microscopia de Fluorescência , Nanofibras/química , Conformação Proteica em alfa-Hélice , Staphylococcus aureus/efeitos dos fármacos , Tensão Superficial
15.
Cureus ; 12(7): e9397, 2020 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-32864228

RESUMO

Syphilis is a sexually transmitted spirochete infection whose presentation depends on the stage of infection. Currently, due to antibiotic treatment, tertiary syphilis is a rare clinical entity. When present, it is characterized by neurosyphilis, gummas, and cardiovascular infection. We present a case of a 64-year-old male who came with abdominal pain due to allergic colitis and was incidentally found to have a mural thrombus of his abdominal aorta. Following a negative workup and no etiologic cause of the thrombus, the patient was diagnosed with syphilitic aortitis. Previous cases have been seen in patients who present with infarction due to aortic thrombosis secondary to syphilitic aortitis. Practitioners must be aware that patients with tertiary syphilis, such as this patient, could have aortic thrombosis without any signs of ischemia and are at risk for infarction.

16.
ACS Appl Mater Interfaces ; 12(40): 44420-44432, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32909733

RESUMO

Molecular dynamics (MD) simulations, stochastic optical reconstruction microscopy (STORM), and neutron reflection (NR) were combined to explore how antimicrobial peptides (AMPs) can be designed to promote the formation of nanoaggregates in bacterial membranes and impose effective bactericidal actions. Changes in the hydrophobicity of the designed AMPs were found to have a strong influence on their bactericidal potency and cytotoxicity. G(IIKK)3I-NH2 (G3) achieved low minimum inhibition concentrations (MICs) and effective dynamic kills against both antibiotic-resistant and -susceptible bacteria. However, a G3 derivative with weaker hydrophobicity, KI(KKII)2I-NH2 (KI), exhibited considerably lower membrane-lytic activity. In contrast, the more hydrophobic G(ILKK)3L-NH2 (GL) peptide achieved MICs similar to those observed for G3 but with worsened hemolysis. Both the model membranes studied by Brewster angle microscopy, zeta potential measurements, and NR and the real bacterial membranes examined with direct STORM contained membrane-inserted peptide aggregates upon AMP exposure. These structural features were well supported by MD simulations. By revealing how AMPs self-assemble in microbial membranes, this work provides important insights into AMP mechanistic actions and allows further fine-tuning of antimicrobial potency and cytotoxicity.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Materiais Biocompatíveis/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Tensoativos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Materiais Biocompatíveis/química , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Tamanho da Partícula , Agregados Proteicos , Propriedades de Superfície , Tensoativos/química
17.
J Colloid Interface Sci ; 575: 245-253, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32361410

RESUMO

HYPOTHESIS: Surfactants are widely used in agri-sprays to improve pesticide efficiency, but the mechanism underlying their interactions with the surface wax film on plants remains poorly understood. To facilitate physical characterisations, we have reconstituted wheat cuticular wax films onto an optically flat silicon substrate with and without octadecyltrimethoxysilane modification to control surface hydrophobicity. EXPERIMENTS: Imaging techniques including scanning electron microscopy (SEM) unravelled morphological features of the reconstituted wax films similar to those on leaves, showing little impact from the different substrates used. Neutron reflection (NR) established that reconstituted wax films were comprised of an underlying wax film decorated with top surface wax protrusions, a common feature irrespective of substrate hydrophobicity and highly consistent with what was observed from natural wax films. NR measurements, with the help of isotopic H/D substitutions to modify the scattering contributions of the wax and solvent, revealed different wax regimes within the wax films, illustrating the impact of surface hydrophilicity on the nanostructures within the wax films. FINDINGS: It was observed from both spectroscopic ellipsometry and NR measurements that wax films formed on the hydrophobic substrate were more robust and durable against attack by nonionic surfactant C12E6 solubilised with pesticide Cyprodinil (CP) than films coated on the bare hydrophilic silica. Thus, the former could be a more feasible model for studying the wax-surfactant-pesticide interactions.

18.
Macromolecules ; 53(7): 2299-2309, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32308214

RESUMO

The compatibility and surface behavior of squalane-polybutadiene mixtures are studied by experimental cloud point and neutron reflectivity measurements, statistical associating fluid theory (SAFT), and molecular dynamics (MD) simulations. A SAFT-γ Mie model is shown to be successful in capturing the cloud point curves of squalane-polybutadiene and squalane-cis-polybutadiene binary mixtures, and the same SAFT-γ Mie model is used to develop a thermodynamically consistent top-down coarse-grained force field to describe squalane-polybutadiene. Coarse-grained molecular dynamics simulations are performed to study surface behavior for different concentrations of squalane, with the system exhibiting surface enrichment and a wetting transition. Simulated surface profiles are compared with those obtained by fitting to neutron reflectivity data obtained from thin films composed of deuterated squalane (d-sq)-polybutadiene. The presented top-down parametrization methodology is a fast and thermodynamically reliable approach for predicting properties of oligomer-polymer mixtures, which can be challenging for either theory or MD simulations alone.

19.
J Colloid Interface Sci ; 565: 567-581, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31982723

RESUMO

The formation of surface multilayer structures, with the addition of multivalent electrolytes, has been observed in a range of different anionic surfactants; and notably the sodium oxyethylene glycol alkyl sulfate, SAES, and alkyl ester sulfonate, AES, surfactants. The addition of increasing amounts of AlCl3 results in increasing surface layering, with a transition from monolayer to bilayer to ultimately more extended multilayer structures at the interface. The headgroup structures of these SAES and AES surfactants and their hydrophilic / hydrophobic balance give a degree of tolerance to the precipitation induced by multivalent counterions. This was considered to be important factor associated with the multivalent counterion induced surface layering. In this paper the impact of sodium dodecyl sulfate, SDS, an anionic surfactant more susceptible to precipitation in the presence of multivalent counterions, on the surface multilayer formation and solution self-assembly of sodium diethylene glycol monododecyl sulfate, SLES, is explored using surface tension, neutron reflectivity and small angle neutron scattering. The results show that SDS exhibits a similar progressive evolution in surface structures with increasing AlCl3 concentrations, as observed in SLES and related SAES surfactants, and in MES, sodium methyl ester dodecyl sulfonate surfactant. However in the SLES / SDS mixtures the structural evolution is different, and more complex pattern with increasing AlCl3 concentration is observed. The initial transition from monolayer to bilayer / trilayer structures exists, but the surface at higher AlCl3 concentration reverts to monolayer adsorption before extended multilayer structures are formed. Complementary small angle neutron scattering measurements indicate a more complex evolution in the micelle structure which broadly correlates with the surface behaviour. The results illustrate how subtle changes in headgroup structure and packing affect relative counterion binding and hence the surface and solution structures. The results reinforce and extend the observations of related structures on different SAES and AES surfactants, and highlight the opportunity for manipulating surface adsorption behaviour with surfactant mixtures.

20.
Anal Chem ; 92(1): 1081-1088, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31769649

RESUMO

In vitro characterization of membrane proteins requires experimental approaches providing mimics of the microenvironment that proteins encounter in native membranes. In this context, supported lipid bilayers provide a suitable platform to investigate membrane proteins by a broad range of surface-sensitive techniques such as neutron reflectometry (NR), quartz crystal microbalance with dissipation monitoring (QCM-D), surface plasmon resonance (SPR), atomic force microscopy (AFM), and fluorescence microscopy. Nevertheless, the successful incorporation of membrane proteins in lipid bilayers with sufficiently high concentration and controlled orientation relative to the bilayer remains challenging. We propose the unconventional use of peptide discs made by phospholipids and amphipathic 18A peptides to mediate the formation of supported phospholipid bilayers with two different types of membrane proteins, CorA and tissue factor (TF). The membrane proteins are reconstituted in peptide discs, deposited on a solid surface, and the peptide molecules are then removed with extensive buffer washes. This leaves a lipid bilayer with a relatively high density of membrane proteins on the support surface. As a very important feature, the strategy allows membrane proteins with one large extramembrane domain to be oriented in the bilayer, thus mimicking the in vivo situation. The method is highly versatile, and we show its general applicability by characterizing with the above-mentioned surface-sensitive techniques two different membrane proteins, which were efficiently loaded in the supported bilayers with ∼0.6% mol/mol (protein/lipid) concentration corresponding to 35% v/v for CorA and 8% v/v for TF. Altogether, the peptide disc mediated formation of supported lipid bilayers with membrane proteins represents an attractive strategy for producing samples for structural and functional investigations of membrane proteins and for preparation of suitable platforms for drug testing or biosensor development.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Bicamadas Lipídicas/metabolismo , Silicatos de Alumínio/química , Ouro/química , Humanos , Bicamadas Lipídicas/química , Peptídeos/química , Fosfatidilcolinas/química , Fosfatidilserinas/química , Proteínas Recombinantes/metabolismo , Dióxido de Silício/química , Tromboplastina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...