Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Med ; 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31700171

RESUMO

The G-protein-coupled receptor accessory protein MRAP2 is implicated in energy control in rodents, notably via the melanocortin-4 receptor1. Although some MRAP2 mutations have been described in people with obesity1-3, their functional consequences on adiposity remain elusive. Using large-scale sequencing of MRAP2 in 9,418 people, we identified 23 rare heterozygous variants associated with increased obesity risk in both adults and children. Functional assessment of each variant shows that loss-of-function MRAP2 variants are pathogenic for monogenic hyperphagic obesity, hyperglycemia and hypertension. This contrasts with other monogenic forms of obesity characterized by excessive hunger, including melanocortin-4 receptor deficiency, that present with low blood pressure and normal glucose tolerance4. The pleiotropic metabolic effect of loss-of-function mutations in MRAP2 might be due to the failure of different MRAP2-regulated G-protein-coupled receptors in various tissues including pancreatic islets.

2.
Bioinformatics ; 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31504159

RESUMO

SUMMARY: The NanoStringTM nCounter® is a platform for the targeted quantification of expression data in biofluids and tissues. While software by the manufacturer is available in addition to third parties packages, they do not provide a complete quality control (QC) pipeline. Here, we present NACHO ('NAnostring quality Control dasHbOard'), a comprehensive QC R-package. The package consists of three subsequent steps: summarize, visualize and normalize. The summarize function collects all the relevant data and stores it in a tidy format, the visualize function initiates a dashboard with plots of the relevant QC outcomes. It contains QC metrics that are measured by default by the manufacturer, but also calculates other insightful measures, including the scaling factors that are needed in the normalization step. In this normalization step, different normalization methods can be chosen to optimally preprocess data. Together, NACHO is a comprehensive method that optimizes insight and preprocessing of nCounter® data. AVAILABILITY AND IMPLEMENTATION: NACHO is available as an R-package on CRAN and the development version on GitHub https://github.com/mcanouil/NACHO. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

3.
Hum Mol Genet ; 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31504550

RESUMO

Although hundreds of GWAS-implicated loci have been reported for adult obesity-related traits, less is known about the genetics specific for early-onset obesity, and with only a few studies conducted in non-European populations to date. Searching for additional genetic variants associated with childhood obesity, we performed a trans-ancestral meta-analysis of thirty studies consisting of up to 13,005 cases (≥95th percentile of BMI achieved 2-18 years old) and 15,599 controls (consistently <50th percentile of BMI) of European, African, North/South American and East Asian ancestry. Suggestive loci were taken forward for replication in a sample of 1,888 cases and 4,689 controls from seven cohorts of European and North/South American ancestry. In addition to observing eighteen previously implicated BMI or obesity loci, for both early and late onset, we uncovered one completely novel locus in this trans-ancestral analysis (nearest gene: METTL15). The variant was nominally associated in only the European subgroup analysis but had a consistent direction of effect in other ethnicities. We then utilized trans-ancestral Bayesian analysis to narrow down the location of the probable causal variant at each genome-wide significant signal. Of all the fine-mapped loci, we were able to narrow down the causative variant at four known loci to fewer than ten SNPs (FAIM2, GNPDA2, MC4R and SEC16B loci). In conclusion, an ethnically diverse setting has enabled us to both identify an additional pediatric obesity locus and further fine-map existing loci.

4.
Int J Obes (Lond) ; 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31388097

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) have identified more than 250 loci associated with body mass index (BMI) and obesity. However, post-GWAS functional genomic investigations have been inadequate for understanding how these genetic loci physiologically impact disease development. METHODS: We performed a PCR-free expression assay targeting genes located nearby the GWAS-identified SNPs associated with BMI/obesity in a large panel of human tissues. Furthermore, we analyzed several genetic risk scores (GRS) summing GWAS-identified alleles associated with increased BMI in 4236 individuals. RESULTS: We found that the expression of BMI/obesity susceptibility genes was strongly enriched in the brain, especially in the insula (p = 4.7 × 10-9) and substantia nigra (p = 6.8 × 10-7), which are two brain regions involved in addiction and reward. Inversely, we found that top obesity/BMI-associated loci, including FTO, showed the strongest gene expression enrichment in the two brain regions. CONCLUSIONS: Our data suggest for the first time that the susceptibility genes for common obesity may have an effect on eating addiction and reward behaviors through their high expression in substantia nigra and insula, i.e., a different pattern from monogenic obesity genes that act in the hypothalamus and cause hyperphagia. Further epidemiological studies with relevant food behavior phenotypes are necessary to confirm these findings.

5.
Sci Rep ; 9(1): 9439, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31263163

RESUMO

Type 2 diabetes (T2D) affects the health of millions of people worldwide. The identification of genetic determinants associated with changes in glycemia over time might illuminate biological features that precede the development of T2D. Here we conducted a genome-wide association study of longitudinal fasting glucose changes in up to 13,807 non-diabetic individuals of European descent from nine cohorts. Fasting glucose change over time was defined as the slope of the line defined by multiple fasting glucose measurements obtained over up to 14 years of observation. We tested for associations of genetic variants with inverse-normal transformed fasting glucose change over time adjusting for age at baseline, sex, and principal components of genetic variation. We found no genome-wide significant association (P < 5 × 10-8) with fasting glucose change over time. Seven loci previously associated with T2D, fasting glucose or HbA1c were nominally (P < 0.05) associated with fasting glucose change over time. Limited power influences unambiguous interpretation, but these data suggest that genetic effects on fasting glucose change over time are likely to be small. A public version of the data provides a genomic resource to combine with future studies to evaluate shared genetic links with T2D and other metabolic risk traits.

6.
Mol Metab ; 24: 98-107, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30956117

RESUMO

OBJECTIVE: Genome wide association studies (GWAS) for type 2 diabetes (T2D) have identified genetic loci that often localise in non-coding regions of the genome, suggesting gene regulation effects. We combined genetic and transcriptomic analysis from human islets obtained from brain-dead organ donors or surgical patients to detect expression quantitative trait loci (eQTLs) and shed light into the regulatory mechanisms of these genes. METHODS: Pancreatic islets were isolated either by laser capture microdissection (LCM) from surgical specimens of 103 metabolically phenotyped pancreatectomized patients (PPP) or by collagenase digestion of pancreas from 100 brain-dead organ donors (OD). Genotyping (> 8.7 million single nucleotide polymorphisms) and expression (> 47,000 transcripts and splice variants) analyses were combined to generate cis-eQTLs. RESULTS: After applying genome-wide false discovery rate significance thresholds, we identified 1,173 and 1,021 eQTLs in samples of OD and PPP, respectively. Among the strongest eQTLs shared between OD and PPP were CHURC1 (OD p-value=1.71 × 10-24; PPP p-value = 3.64 × 10-24) and PSPH (OD p-value = 3.92 × 10-26; PPP p-value = 3.64 × 10-24). We identified eQTLs in linkage-disequilibrium with GWAS loci T2D and associated traits, including TTLL6, MLX and KIF9 loci, which do not implicate the nearest gene. We found in the PPP datasets 11 eQTL genes, which were differentially expressed in T2D and two genes (CYP4V2 and TSEN2) associated with HbA1c but none in the OD samples. CONCLUSIONS: eQTL analysis of LCM islets from PPP led us to identify novel genes which had not been previously linked to islet biology and T2D. The understanding gained from eQTL approaches, especially using surgical samples of living patients, provides a more accurate 3-dimensional representation than those from genetic studies alone.

7.
Nat Genet ; 50(11): 1505-1513, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30297969

RESUMO

We expanded GWAS discovery for type 2 diabetes (T2D) by combining data from 898,130 European-descent individuals (9% cases), after imputation to high-density reference panels. With these data, we (i) extend the inventory of T2D-risk variants (243 loci, 135 newly implicated in T2D predisposition, comprising 403 distinct association signals); (ii) enrich discovery of lower-frequency risk alleles (80 index variants with minor allele frequency <5%, 14 with estimated allelic odds ratio >2); (iii) substantially improve fine-mapping of causal variants (at 51 signals, one variant accounted for >80% posterior probability of association (PPA)); (iv) extend fine-mapping through integration of tissue-specific epigenomic information (islet regulatory annotations extend the number of variants with PPA >80% to 73); (v) highlight validated therapeutic targets (18 genes with associations attributable to coding variants); and (vi) demonstrate enhanced potential for clinical translation (genome-wide chip heritability explains 18% of T2D risk; individuals in the extremes of a T2D polygenic risk score differ more than ninefold in prevalence).

8.
Sci Signal ; 11(545)2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154102

RESUMO

Melatonin is produced during the night and regulates sleep and circadian rhythms. Loss-of-function variants in MTNR1B, which encodes the melatonin receptor MT2, a G protein-coupled receptor (GPCR), are associated with an increased risk of type 2 diabetes (T2D). To identify specific T2D-associated signaling pathway(s), we profiled the signaling output of 40 MT2 variants by monitoring spontaneous (ligand-independent) and melatonin-induced activation of multiple signaling effectors. Genetic association analysis showed that defects in the melatonin-induced activation of Gαi1 and Gαz proteins and in spontaneous ß-arrestin2 recruitment to MT2 were the most statistically significantly associated with an increased T2D risk. Computational variant impact prediction by in silico evolutionary lineage analysis strongly correlated with the measured phenotypic effect of each variant, providing a predictive tool for future studies on GPCR variants. Together, this large-scale functional study provides an operational framework for the postgenomic analysis of the multiple GPCR variants present in the human population. The association of T2D risk with signaling pathway-specific defects opens avenues for pathway-specific personalized therapeutic intervention and reveals the potential relevance of MT2 function during the day, when melatonin is undetectable, but spontaneous activity of the receptor occurs.

9.
Front Genet ; 9: 210, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29963075

RESUMO

In observational cohorts, longitudinal data are collected with repeated measurements at predetermined time points for many biomarkers, along with other variables measured at baseline. In these cohorts, time until a certain event of interest occurs is reported and very often, a relationship will be observed between some biomarker repeatedly measured over time and that event. Joint models were designed to efficiently estimate statistical parameters describing this relationship by combining a mixed model for the longitudinal biomarker trajectory and a survival model for the time until occurrence of the event, using a set of random effects to account for the relationship between the two types of data. In this paper, we discuss the implementation of joint models in genetic association studies. First, we check model consistency based on different simulation scenarios, by varying sample sizes, minor allele frequencies and number of repeated measurements. Second, using genotypes assayed with the Metabochip DNA arrays (Illumina) from about 4,500 individuals recruited in the French cohort D.E.S.I.R. (Data from an Epidemiological Study on the Insulin Resistance syndrome), we assess the feasibility of implementing the joint modelling approach in a real high-throughput genomic dataset. An alternative model approximating the joint model, called the Two-Step approach (TS), is also presented. Although the joint model shows more precise and less biased estimators than its alternative counterpart, the TS approach results in much reduced computational times, and could thus be used for testing millions of SNPs at the genome-wide scale.

10.
Diabetes ; 67(7): 1310-1321, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29728363

RESUMO

In type 2 diabetes (T2D), hepatic insulin resistance is strongly associated with nonalcoholic fatty liver disease (NAFLD). In this study, we hypothesized that the DNA methylome of livers from patients with T2D compared with livers of individuals with normal plasma glucose levels can unveil some mechanism of hepatic insulin resistance that could link to NAFLD. Using DNA methylome and transcriptome analyses of livers from obese individuals, we found that hypomethylation at a CpG site in PDGFA (encoding platelet-derived growth factor α) and PDGFA overexpression are both associated with increased T2D risk, hyperinsulinemia, increased insulin resistance, and increased steatohepatitis risk. Genetic risk score studies and human cell modeling pointed to a causative effect of high insulin levels on PDGFA CpG site hypomethylation, PDGFA overexpression, and increased PDGF-AA secretion from the liver. We found that PDGF-AA secretion further stimulates its own expression through protein kinase C activity and contributes to insulin resistance through decreased expression of insulin receptor substrate 1 and of insulin receptor. Importantly, hepatocyte insulin sensitivity can be restored by PDGF-AA-blocking antibodies, PDGF receptor inhibitors, and by metformin, opening therapeutic avenues. Therefore, in the liver of obese patients with T2D, the increased PDGF-AA signaling contributes to insulin resistance, opening new therapeutic avenues against T2D and possibly NAFLD.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina , Fígado/metabolismo , Obesidade/metabolismo , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Adulto , Estudos de Casos e Controles , Células Cultivadas , Metilação de DNA , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Epigênese Genética/fisiologia , Feminino , Predisposição Genética para Doença , Humanos , Resistência à Insulina/genética , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/complicações , Obesidade/genética , Obesidade/patologia , Transdução de Sinais/genética , Regulação para Cima/genética
11.
PLoS One ; 12(6): e0179583, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28628672

RESUMO

Bisphenol A (BPA) exposure has been suspected to be associated with deleterious effects on health including obesity and metabolically-linked diseases. Although bisphenols F (BPF) and S (BPS) are BPA structural analogs commonly used in many marketed products as a replacement for BPA, only sparse toxicological data are available yet. Our objective was to comprehensively characterize bisphenols gene targets in a human primary adipocyte model, in order to determine whether they may induce cellular dysfunction, using chronic exposure at two concentrations: a "low-dose" similar to the dose usually encountered in human biological fluids and a higher dose. Therefore, BPA, BPF and BPS have been added at 10 nM or 10 µM during the differentiation of human primary adipocytes from subcutaneous fat of three non-diabetic Caucasian female patients. Gene expression (mRNA/lncRNA) arrays and microRNA arrays, have been used to assess coding and non-coding RNA changes. We detected significantly deregulated mRNA/lncRNA and miRNA at low and high doses. Enrichment in "cancer" and "organismal injury and abnormalities" related pathways was found in response to the three products. Some long intergenic non-coding RNAs and small nucleolar RNAs were differentially expressed suggesting that bisphenols may also activate multiple cellular processes and epigenetic modifications. The analysis of upstream regulators of deregulated genes highlighted hormones or hormone-like chemicals suggesting that BPS and BPF can be suspected to interfere, just like BPA, with hormonal regulation and have to be considered as endocrine disruptors. All these results suggest that as BPA, its substitutes BPS and BPF should be used with the same restrictions.


Assuntos
Compostos Benzidrílicos/toxicidade , Regulação para Baixo/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Fenóis/toxicidade , RNA não Traduzido/metabolismo , Regulação para Cima/efeitos dos fármacos , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Compostos Benzidrílicos/química , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Bases de Dados Factuais , Humanos , Fenóis/química , RNA Mensageiro/metabolismo , Sulfonas
12.
Mol Metab ; 6(6): 459-470, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28580277

RESUMO

OBJECTIVES: Genome-wide association studies (GWAS) have identified >100 loci independently contributing to type 2 diabetes (T2D) risk. However, translational implications for precision medicine and for the development of novel treatments have been disappointing, due to poor knowledge of how these loci impact T2D pathophysiology. Here, we aimed to measure the expression of genes located nearby T2D associated signals and to assess their effect on insulin secretion from pancreatic beta cells. METHODS: The expression of 104 candidate T2D susceptibility genes was measured in a human multi-tissue panel, through PCR-free expression assay. The effects of the knockdown of beta-cell enriched genes were next investigated on insulin secretion from the human EndoC-ßH1 beta-cell line. Finally, we performed RNA-sequencing (RNA-seq) so as to assess the pathways affected by the knockdown of the new genes impacting insulin secretion from EndoC-ßH1, and we analyzed the expression of the new genes in mouse models with altered pancreatic beta-cell function. RESULTS: We found that the candidate T2D susceptibility genes' expression is significantly enriched in pancreatic beta cells obtained by laser capture microdissection or sorted by flow cytometry and in EndoC-ßH1 cells, but not in insulin sensitive tissues. Furthermore, the knockdown of seven T2D-susceptibility genes (CDKN2A, GCK, HNF4A, KCNK16, SLC30A8, TBC1D4, and TCF19) with already known expression and/or function in beta cells changed insulin secretion, supporting our functional approach. We showed first evidence for a role in insulin secretion of four candidate T2D-susceptibility genes (PRC1, SRR, ZFAND3, and ZFAND6) with no previous knowledge of presence and function in beta cells. RNA-seq in EndoC-ßH1 cells with decreased expression of PRC1, SRR, ZFAND6, or ZFAND3 identified specific gene networks related to T2D pathophysiology. Finally, a positive correlation between the expression of Ins2 and the expression of Prc1, Srr, Zfand6, and Zfand3 was found in mouse pancreatic islets with altered beta-cell function. CONCLUSIONS: This study showed the ability of post-GWAS functional studies to identify new genes and pathways involved in human pancreatic beta-cell function and in T2D pathophysiology.

13.
BMC Med ; 15(1): 37, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28228143

RESUMO

BACKGROUND: Salivary (AMY1) and pancreatic (AMY2) amylases hydrolyze starch. Copy number of AMY1A (encoding AMY1) was reported to be higher in populations with a high-starch diet and reduced in obese people. These results based on quantitative PCR have been challenged recently. We aimed to re-assess the relationship between amylase and adiposity using a systems biology approach. METHODS: We assessed the association between plasma enzymatic activity of AMY1 or AMY2, and several metabolic traits in almost 4000 French individuals from D.E.S.I.R. longitudinal study. The effect of the number of copies of AMY1A (encoding AMY1) or AMY2A (encoding AMY2) measured through droplet digital PCR was then analyzed on the same parameters in the same study. A Mendelian randomization analysis was also performed. We subsequently assessed the association between AMY1A copy number and obesity risk in two case-control studies (5000 samples in total). Finally, we assessed the association between body mass index (BMI)-related plasma metabolites and AMY1 or AMY2 activity. RESULTS: We evidenced strong associations between AMY1 or AMY2 activity and lower BMI. However, we found a modest contribution of AMY1A copy number to lower BMI. Mendelian randomization identified a causal negative effect of BMI on AMY1 and AMY2 activities. Yet, we also found a significant negative contribution of AMY1 activity at baseline to the change in BMI during the 9-year follow-up, and a significant contribution of AMY1A copy number to lower obesity risk in children, suggesting a bidirectional relationship between AMY1 activity and adiposity. Metabonomics identified a BMI-independent association between AMY1 activity and lactate, a product of complex carbohydrate fermentation. CONCLUSIONS: These findings provide new insights into the involvement of amylase in adiposity and starch metabolism.


Assuntos
Índice de Massa Corporal , Obesidade/enzimologia , alfa-Amilases Pancreáticas/metabolismo , alfa-Amilases Salivares/metabolismo , Criança , Feminino , Humanos , Estudos Longitudinais , Masculino , Biologia de Sistemas
14.
Am J Hum Genet ; 100(2): 238-256, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28132686

RESUMO

Genetic variants near ARAP1 (CENTD2) and STARD10 influence type 2 diabetes (T2D) risk. The risk alleles impair glucose-induced insulin secretion and, paradoxically but characteristically, are associated with decreased proinsulin:insulin ratios, indicating improved proinsulin conversion. Neither the identity of the causal variants nor the gene(s) through which risk is conferred have been firmly established. Whereas ARAP1 encodes a GTPase activating protein, STARD10 is a member of the steroidogenic acute regulatory protein (StAR)-related lipid transfer protein family. By integrating genetic fine-mapping and epigenomic annotation data and performing promoter-reporter and chromatin conformational capture (3C) studies in ß cell lines, we localize the causal variant(s) at this locus to a 5 kb region that overlaps a stretch-enhancer active in islets. This region contains several highly correlated T2D-risk variants, including the rs140130268 indel. Expression QTL analysis of islet transcriptomes from three independent subject groups demonstrated that T2D-risk allele carriers displayed reduced levels of STARD10 mRNA, with no concomitant change in ARAP1 mRNA levels. Correspondingly, ß-cell-selective deletion of StarD10 in mice led to impaired glucose-stimulated Ca2+ dynamics and insulin secretion and recapitulated the pattern of improved proinsulin processing observed at the human GWAS signal. Conversely, overexpression of StarD10 in the adult ß cell improved glucose tolerance in high fat-fed animals. In contrast, manipulation of Arap1 in ß cells had no impact on insulin secretion or proinsulin conversion in mice. This convergence of human and murine data provides compelling evidence that the T2D risk associated with variation at this locus is mediated through reduction in STARD10 expression in the ß cell.


Assuntos
Diabetes Mellitus Tipo 2/genética , Insulina/metabolismo , Fosfoproteínas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Alelos , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Clonagem Molecular , Diabetes Mellitus Tipo 2/sangue , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica , Variação Genética , Homeostase , Humanos , Insulina/sangue , Células Secretoras de Insulina/metabolismo , Fígado/metabolismo , Camundongos , Proinsulina/sangue , Proinsulina/metabolismo , Locos de Características Quantitativas , Transcriptoma
15.
Diabetes ; 66(1): 25-35, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27999105

RESUMO

Hepatic DPP4 expression is elevated in subjects with ectopic fat accumulation in the liver. However, whether increased dipeptidyl peptidase 4 (DPP4) is involved in the pathogenesis or is rather a consequence of metabolic disease is not known. We therefore studied the transcriptional regulation of hepatic Dpp4 in young mice prone to diet-induced obesity. Already at 6 weeks of age, expression of hepatic Dpp4 was increased in mice with high weight gain, independent of liver fat content. In the same animals, methylation of four intronic CpG sites was decreased, amplifying glucose-induced transcription of hepatic Dpp4 In older mice, hepatic triglyceride content was increased only in animals with elevated Dpp4 expression. Expression and release of DPP4 were markedly higher in the liver compared with adipose depots. Analysis of human liver biopsy specimens revealed a correlation of DPP4 expression and DNA methylation to stages of hepatosteatosis and nonalcoholic steatohepatitis. In summary, our results indicate a crucial role of the liver in participation to systemic DPP4 levels. Furthermore, the data show that glucose-induced expression of Dpp4 in the liver is facilitated by demethylation of the Dpp4 gene early in life. This might contribute to early deteriorations in hepatic function, which in turn result in metabolic disease such as hepatosteatosis later in life.


Assuntos
Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Animais , Western Blotting , Linhagem Celular , Células Cultivadas , Ilhas de CpG/genética , Metilação de DNA/genética , Metilação de DNA/fisiologia , Regulação da Expressão Gênica , Glucose/metabolismo , Hepatócitos/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA