Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 41(3): 1013-1024, 2020 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608601

RESUMO

Intensive social and economic activity has led to serious pollution in the Yangtze River economic belt since 2000. It is urgent to study the evolution of the distribution of PM2.5 concentration and its influencing factors in this area, to adopt new ways of development into practice and promote comprehensive regional air pollution prevention and control. Based on PM2.5 concentration estimated by remote sensing retrieval, this paper studied the evolution of the distribution of PM2.5 concentration in the Yangtze River economic belt from 2000 to 2016, and analyzed spatial non-stationarity of the influence of natural and socio-economic factors on this evolution via a geographically weighted regression model. The results showed that:①The general law of PM2.5 concentration presented as higher in the east and lower in the west, with a significant trait of the pollution agglomerations corresponding to urban agglomerations. ②Taking the year 2007 as a divide, annual concentration of PM2.5 went through a pattern of annually increasing from 2000 to 2007. and then wavelike decreasing from 2007 to 2016. The annual average concentration increased to 44.1 µg·m-3 in 2007 from the record of 27.2 µg·m-3 in 2000, and then decreased to 33.6 µg·m-3 in 2016. In terms of regions polluted, before 2007, it covered areas including the Yangtze River Delta urban agglomerations, the Yangtze River Middle Reaches urban agglomerations, and the Chengdu-Chongqing urban agglomerations, before quickly stretching to their neighboring areas; after 2007, the extent of areas covered shrank. ③Based on spatial auto-correlation analysis, PM2.5 concentration had a significant spatial auto-correlation with hot spots spread over Shanghai, Jiangsu, north-central Anhui, northern Zhejiang, and the central part of Hubei, while cool spots were located in Yunnan, the western and southern parts of Sichuan, and the western part of Guizhou. ④There is a space-time discrepancy by socio-economic and natural factors in the distribution of PM2.5 concentration. The socio-economic factors mainly have a positive influence on the concentration, whereas precipitation, one of the natural factors, has a negative influence. The remaining natural factors not only varied in their degree of influence, but also triggered the influence either in a positive or negative manner from time to time and space to space.

2.
Huan Jing Ke Xue ; 41(4): 1535-1543, 2020 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608658

RESUMO

Based on the ozone monitoring data from 2014 to 2018, we presented the variation of ozone concentration in Xi'an and revealed the effects of ozone concentration by meteorological factors based on the generalized additive model (GAM). The results showed that ① with increasing ozone concentration year by year, the assessment standard of ozone pollution was overtaken by three consecutive years since 2016. However, the rising trend was slowed down since 2017 as a result of the strengthened pollution control during summer. ② The monthly curve of ozone concentration was presented as a reversed "V" model with a rising trend accompanying the rising temperature from January to July and a decreasing one during the rest of the year, peaking in July in terms of average monthly ozone concentration. However, this model would turn into an "M" in years with high precipitation when the valley witnessed the highest precipitation in a month. ③ The ozone pollution increased from the year 2014 to 2018 with a stretch-forward ozone polluted time. Furthermore, the rates of ozone non-attainment increased from 1.9% in 2014 to 14% in 2018. In addition, the time ozone pollution emerged advanced from July to May. ④ Based on the GAM model, ozone concentration was non-colinearly related to temperature, air pressure, sunshine duration, and relative humidity. However, the curves of these factors varied considerably, with a positive influence of temperature and sunshine duration and a negative influence of air pressure and relative humidity. The influence of precipitation was mainly witnessed in summers, while no influence of wind was observed. Furthermore, ozone pollution can be easily triggered under the following conditions:temperature>24℃, air pressure <962 hPa, sunshine duration>9 h, and a relative humidity 36%-65% with no rain.

3.
Sci Total Environ ; 742: 140501, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32622166

RESUMO

Epidemiological studies have demonstrated significant associations between traffic-related air pollution and adverse health outcomes. Personal exposure to fine particles (PM2.5) in transport microenvironments and their toxicological properties remain to be investigated. Commuter exposures were investigated in public transport systems (including the buses and Mass Transit Railway (MTR)) along two sampling routes in Hong Kong. Real-time sampling for PM2.5 and black carbon (BC), along with integrated PM2.5 sampling, were performed during the warm and cold season of 2016-2017, respectively. Commuter exposure to BC during 3-hour commuting time exhibited a wider range, from 3.4 to 4.6 µg/m3 on the bus and 5.5 to 8.7 µg/m3 in MTR cabin (p < .05). PM2.5 mass and major chemical constituents (including organic carbon (OC), elemental carbon (EC), and metals) were analyzed. Cytotoxicity, including cellular reactive oxygen species (ROS) production, was determined in addition to acellular ROS generation. PM2.5 treatment promoted the ROS generation in a concentration-dependent manner. Consistent diurnal variations were observed for commuter exposure to BC and PM2.5 components, along with cellular and acellular ROS generation, which marked with two peaks during the morning (08:00-11:00) and evening rush hours (17:30-20:30). Commuter exposures in the MTR system were characterized by higher levels of PM2.5 and elemental components (e.g., Ca, Cr, Fe, Zn, Ba) compared to riding the bus, along with higher cellular and acellular ROS production (p < .01). These metals were attributed to different sources: rail tracks, wheels, brakes, and crustal origin. Weak to moderate associations were shown for the analyzed transition metals with PM2.5-induced cell viability and cellular ROS. Multiple linear regression analysis revealed that Ni, Zn, Mn, Fe, Ti, and Co attributed to cytotoxicity and ROS generation. These findings underscore the importance of commuter exposures and their toxic effects, urging effective mitigating strategies to protect human health.

4.
Environ Res ; 188: 109780, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32554275

RESUMO

Direct evidence about associations between fine particles (PM2.5) components and the corresponding PM2.5 bioreactivity at the individual level is limited. We conducted a panel study with repeated personal measurements involving 56 healthy residents in Hong Kong. Fractional exhaled nitric oxide (FeNO) levels were measured from these subjects. Out of 56 subjects, 27 (48.2%) participated in concurrent outdoor, indoor, and personal PM2.5 monitoring. Organic carbon (OC), elemental carbon (EC), particle bound-polycyclic aromatic hydrocarbons (PAHs), and phthalates were analyzed. Alteration in cell viability, lactic dehydrogenase (LDH), interleukin-6 (IL-6), and 8-isoprostane by 50 µg/mL PM2.5 extracts was determined in A549 cells in vitro. Moderate heterogeneities were shown in PM2.5 exposures and the corresponding PM2.5 bioreactivity across different sample types. Associations between the analyzed components and PM2.5 bioreactivity were assessed using the multiple regression models. Toxicological results revealed that indoor and personal exposure to OC as well as PAH compounds and their derivatives (e.g., Alkyl-PAHs, Oxy-PAHs) induced cell viability reduction and increase in levels of LDH, IL-6, and 8-isoprostane. Overall, OC in personal exposure played a dominant role in PM2.5-induced bioreactivity. Subsequently, we examined the associations of FeNO with IL-6 and 8-isoprostane levels using mixed-effects models. The results showed that per interquartile change in IL-6 and 8-isoprostane were associated with a 6.4% (p < 0.01) and 11.1% (p < 0.01) increase in FeNO levels, respectively. Our study explored the toxicological properties of chemical components in PM2.5 exposure, which suggested that residential indoors and personal OC and PAHs should be of great concern for human health. These findings indicated that further studies in inflammation and oxidative stress-related illnesses due to particle exposure would benefit from the assessment of in vitro PM2.5 bioreactivity.

5.
Environ Int ; 142: 105832, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32521345

RESUMO

During the rapid rise in COVID-19 illnesses and deaths globally, and notwithstanding recommended precautions, questions are voiced about routes of transmission for this pandemic disease. Inhaling small airborne droplets is probable as a third route of infection, in addition to more widely recognized transmission via larger respiratory droplets and direct contact with infected people or contaminated surfaces. While uncertainties remain regarding the relative contributions of the different transmission pathways, we argue that existing evidence is sufficiently strong to warrant engineering controls targeting airborne transmission as part of an overall strategy to limit infection risk indoors. Appropriate building engineering controls include sufficient and effective ventilation, possibly enhanced by particle filtration and air disinfection, avoiding air recirculation and avoiding overcrowding. Often, such measures can be easily implemented and without much cost, but if only they are recognised as significant in contributing to infection control goals. We believe that the use of engineering controls in public buildings, including hospitals, shops, offices, schools, kindergartens, libraries, restaurants, cruise ships, elevators, conference rooms or public transport, in parallel with effective application of other controls (including isolation and quarantine, social distancing and hand hygiene), would be an additional important measure globally to reduce the likelihood of transmission and thereby protect healthcare workers, patients and the general public.


Assuntos
Microbiologia do Ar , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , Aerossóis , Betacoronavirus , Aglomeração , Desinfecção/instrumentação , Filtração , Humanos , Exposição por Inalação , Ventilação
6.
Environ Int ; 140: 105732, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32361073

RESUMO

To mitigate air pollution in China, a legislative 'Air Pollution Prevention and Control Action Plan' has been implemented by the Chinese government since 2013. There is, however, a lack of investigations for long-term trends in the composition, sources and evolution processes of PM1 (particulate matter with diameter less than 1 µm) after the implementation. To evaluate the effectiveness of these control measures, we present a year-long real-time measurement of the chemical composition of PM1 at an urban site in Beijing from November 2014 to November 2015, and the results are compared with previous studies from 2008 to 2013 to gain insights into the variations of the chemical composition and sources of PM1 in Beijing. Large seasonal differences were observed in the mass concentrations of PM1 species and general declining trend was observed in the last seven years. Specifically, the annual averages of mass concentrations in 2014-2015 decrease by 16-43% (PM1), 23-43% (organic aerosol, OA), 38-68% (sulfate), 26-51% (nitrate), 18-33% (ammonium) and 27-38% (chloride) compared to those from 2008 to 2013. During winter and summer, the seasonal mass concentrations of sulfate and nitrate show more significant declines especially in summer 2008 (79% and 81%) and summer 2011 (76% and 77%). The nitrate-to-sulfate ratio is higher in 2014-2015 (1.5 ± 0.6) than that in 2013 (1.0 ± 0.3), largely due to significant reduction in SO2 emissions, suggesting that nitrate is becoming more important than sulfate in particulate pollution in Beijing. OA is the dominant PM1 fraction (>45%) in all seasons and the mass concentrations/contributions of both primary and secondary OA show different seasonality. As for the more oxidized oxygenated OA (MO-OOA) and less oxidized oxygenated OA (LO-OOA), the contributions of MO-OOA are much higher than those of LO-OOA (27-62% vs. 6-26%) in both high-pollution and low-pollution days. Aqueous-phase processes are found to facilitate the formation of MO-OOA while photochemical oxidation formation is a major contributor of LO-OOA in winter, and photochemical oxidation plays a major role in the formation of MO-OOA in summer and fall. The current study provides a comprehensive seasonal comparison of chemical composition and formation of PM1 in Beijing and a pacesetter in tackling PM pollution for other equally polluted megacities, after implementation of more stringent control measures after 2013.

7.
Sci Total Environ ; 731: 139133, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32402905

RESUMO

Measures taken to control the disease (Covid-19) caused by the novel coronavirus dramatically reduced the number of vehicles on the road and diminished factory production. For this study, changes in the air quality index (AQI) and the concentrations of six air pollutants (PM2.5, PM10, CO, SO2, NO2, and O3) were evaluated during the Covid-19 control period in northern China. Overall, the air quality improved, most likely due to reduced emissions from the transportation and secondary industrial sectors. Specifically, the transportation sector was linked to the NO2 emission reductions, while lower emissions from secondary industries were the major cause for the reductions of PM2.5 and CO. The reduction in SO2 concentrations was only linked to the industrial sector. However, the reductions in emissions did not fully eliminate air pollution, and O3 actually increased, possibly because lower fine particle loadings led to less scavenging of HO2 and as a result greater O3 production. These results also highlight need to control emissions from the residential sector.


Assuntos
Poluição do Ar , Betacoronavirus , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Poluentes Atmosféricos , China , Monitoramento Ambiental , Humanos , Material Particulado
8.
Environ Sci Pollut Res Int ; 27(22): 27926-27936, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32405940

RESUMO

Recycled moisture, mainly originated from evapotranspiration (surface evaporation and transpiration), is the main sources of precipitation. Influenced on the different regional/local environments, the contributions of recycled moisture to precipitation present as different proportions. Recycled moisture has an important impact on the hydrological cycle, further occurred a series of environmental effect for regional/local. Aimed to estimate the contribution of recycled moisture to precipitation in an enclosed basin, Guanzhong Basin of northern China, precipitation and lake/reservoir samples were collected. The isotope ratio analysis was done for the summer season, and a three-component mixing model based on the stable hydrogen and oxygen isotopes was applied. The results indicated that the averaged contribution of recycled moisture to precipitation was 17.44% in Guanzhong Basin of northern China, while the mean proportions of surface evaporation moisture and transpiration moisture were found to be 0.38% and 16.97%, respectively. Comparatively, most of the recycled moisture mainly comes from transpiration moisture rather than evaporation moisture, suggesting that transpiration moisture from cropland, vegetation, and plants instead of evaporation is dominant in moisture recycling of the Guanzhong Basin.


Assuntos
Monitoramento Ambiental , Chuva , China , Isótopos de Oxigênio/análise , Estações do Ano
9.
Sci Total Environ ; 728: 138891, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32361364

RESUMO

Predicting how shifts in plant phenology affect species dominance remains challenging, because plant phenology and species dominance have been largely investigated independently. Moreover, most phenological research has primarily focused on phenological firsts (leaf-out and first flower dates), leading to a lack of representation of phenological lasts (leaf senescence and last flower) and full phenological periods (growing season length and flower duration). Here, we simultaneously investigated the effects of experimental warming on different phenological events of various species and species dominance in an alpine meadow on the Tibetan Plateau. Warming significantly advanced phenological firsts for most species but had variable effects on phenological lasts. As a result, warming tended to extend species' full phenological periods, although this trend was not significant for all species. Experimental warming reduced community evenness and differentially impacted species dominance. Shifts in full phenological periods, rather than a single shift in phenological firsts or phenological lasts, were associated with changes in species dominance. Species with lengthened full phenological periods under warming increased their dominance. Our results advance the understanding of how altered species-specific phenophases relate to changes in community structure in response to climate change.


Assuntos
Mudança Climática , Plantas , Flores , Estações do Ano , Temperatura
10.
Environ Int ; 139: 105730, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32294574

RESUMO

Hand washing and maintaining social distance are the main measures recommended by the World Health Organization (WHO) to avoid contracting COVID-19. Unfortunately, these measured do not prevent infection by inhalation of small droplets exhaled by an infected person that can travel distance of meters or tens of meters in the air and carry their viral content. Science explains the mechanisms of such transport and there is evidence that this is a significant route of infection in indoor environments. Despite this, no countries or authorities consider airborne spread of COVID-19 in their regulations to prevent infections transmission indoors. It is therefore extremely important, that the national authorities acknowledge the reality that the virus spreads through air, and recommend that adequate control measures be implemented to prevent further spread of the SARS-CoV-2 virus, in particularly removal of the virus-laden droplets from indoor air by ventilation.


Assuntos
Poluição do Ar em Ambientes Fechados , Betacoronavirus , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Ventilação , Betacoronavirus/patogenicidade , Infecções por Coronavirus/transmissão , Humanos , Pneumonia Viral/transmissão
11.
Sci Total Environ ; 726: 138545, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32305762

RESUMO

Open burning of crop residues is a major source of volatile organic compounds (VOCs), which contribute substantially to the formation of secondary organic aerosols (SOAs) in the atmosphere. An integrated system of combustion chamber coupled with potential aerosol mass (PAM) reactor was used to demonstrate the emission characteristics of fresh and aged VOCs (corresponding to 2- and 7-day atmospheric aging) from the burning of rice, maize, and wheat straws. The average emission factor (EF) of quantified non-methane VOCs (NMVOCs) emitted from the straw (fresh) was 1.82 ± 0.41 g/kg and wheat straw had the highest EFs. The EF residues of quantified NMVOCs decreased considerably after photo-oxidation in PAM. Stronger oxidation condition (7-day aging) produced a 57.2% decline in NMVOC EFs, compared with 42.3% decline during 2-day atmospheric aging. The largest declines were observed in the alkenes group: 82.6% and 66.2% after 7- and 2-day aging, respectively, which is consistent with their high reactivity toward oxidation with ozone and hydroxyl radical (OH). Aromatic compounds mainly reacted with OH, and their EFs decreased 59.1% on average. Alkanes were much less reactive, and their EFs only decreased an average of 29.8% after the oxidation processes. Considerable SOAs formation was observed in the fine particulate matter (PM2.5) filter samples collected after the oxidation of isoprene, benzene and toluene. The moderate to strong correlations between isoprene and isoprene-derived SOAs, between benzene and toluene with nitrophenols, and between toluene and aromatic acids demonstrate that the VOCs were degraded in the reactions with oxidative radicals, producing active contributors to SOAs formations.


Assuntos
Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Aerossóis/análise , Monitoramento Ambiental , Material Particulado/análise
12.
Proc Natl Acad Sci U S A ; 117(18): 9755-9761, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32300007

RESUMO

Aerosol-radiation interaction (ARI) plays a significant role in the accumulation of fine particulate matter (PM2.5) by stabilizing the planetary boundary layer and thus deteriorating air quality during haze events. However, modification of photolysis by aerosol scattering or absorbing solar radiation (aerosol-photolysis interaction or API) alters the atmospheric oxidizing capacity, decreases the rate of secondary aerosol formation, and ultimately alleviates the ARI effect on PM2.5 pollution. Therefore, the synergetic effect of both ARI and API can either aggravate or even mitigate PM2.5 pollution. To test the effect, a fully coupled Weather Research and Forecasting (WRF)-Chem model has been used to simulate a heavy haze episode in North China Plain. Our results show that ARI contributes to a 7.8% increase in near-surface PM2.5 However, API suppresses secondary aerosol formation, and the combination of ARI and API results in only 4.8% net increase of PM2.5 Additionally, API increases the solar radiation reaching the surface and perturbs aerosol nucleation and activation to form cloud condensation nuclei, influencing aerosol-cloud interaction. The results suggest that API reduces PM2.5 pollution during haze events, but adds uncertainties in climate prediction.

13.
Environ Sci Technol ; 54(7): 3803-3813, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32150391

RESUMO

Brown carbon (BrC), an aerosol carbonaceous matter component, impacts atmospheric radiation and global climate because of its absorption in the near-ultraviolet-visible region. Simultaneous air sampling was conducted in two megacities of Xi'an (northern) and Hong Kong (southern) in China in winter of 2016-2017. The aim of this study is to determine and characterize the BrC compounds in collected filter samples. Characteristic absorption peaks corresponding to aromatic C-C stretching bands, organo-nitrates, and C═O functional groups were seen in spectra of Xi'an samples, suggesting that the BrC was derived from freshly smoldering biomass and coal combustion as well as aqueous formation of anthropogenic secondary organic carbon. In Hong Kong, the light absorption of secondary BrC accounted for 76% of the total absorbances of BrC. The high abundance of strong C═O groups, biogenic volatile organic compounds (BVOCs) and atmospheric oxidants suggest secondary BrC was likely formed from photochemical oxidation of BVOCs in Hong Kong. Several representative BrC molecular markers were detected using Fourier transform ion cyclotron resonance mass spectrometry and their absorption properties were simulated by quantum chemistry. The results demonstrate that light absorption capacities of secondary anthropogenic BrC with nitro-functional groups were stronger than those of biogenic secondary BrC and anthropogenic primary BrC.


Assuntos
Poluentes Atmosféricos , Carbono , Aerossóis , China , Cidades , Carvão Mineral , Monitoramento Ambiental , Hong Kong , Material Particulado
14.
Environ Pollut ; 262: 114272, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32135434

RESUMO

We used the Weather Research and Forecasting Model coupled with Chemistry (WRF-Chem) to simulate elemental carbon (EC) concentrations in Thailand in 2017. The goals were to quantify the respective contributions of local emissions and regional transport outside Thailand to EC pollution in Thailand, and to identify the most effective emission control strategy for decreasing EC pollution. The simulated EC concentrations in Chiang Mai, Bangkok, and Phuket were comparable with the observation data. The correlation coefficient between the simulated and observed EC concentrations was 0.84, providing a good basis for evaluating EC sources in Thailand. The simulated mean EC concentration over the whole country was the highest (1.38 µg m-3) in spring, and the lowest (0.51 µg m-3) in summer. We conducted several sensitivity simulations to evaluate EC sources. Local emissions (including anthropogenic and biomass burning emissions) and regional transport outside Thailand contributed 81.2% and 18.8% to the annual mean EC concentrations, respectively, indicating that local sources played the dominant role for EC pollution in Thailand. Among the local sources, anthropogenic emissions (including the industry, power plant, residential, and transportation sectors) and biomass burning contributed 75.1% and 6.1% to the annual mean EC concentrations, respectively. As the anthropogenic emissions dominated the EC pollution, we performed four sensitivity simulations by reducing 30% of the emissions from each of the industry, power plant, residential, and transportation sectors in Thailand. The results indicated that controlling transportation emissions in Thailand was the most effective way in reducing the EC pollution. The 30% reduction of transportation emissions decreased the annual mean EC concentrations by 12.1%. In contrast, 30% reductions of the residential, industry, and power plant emissions caused 8.4%, 6.4%, and 4.0% decreases in the annual mean EC concentrations, respectively. The model results could potentially provide useful information for air pollution control strategies in Thailand.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Carbono/análise , Monitoramento Ambiental , Material Particulado/análise , Tailândia
15.
Sci Total Environ ; 721: 137696, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32182464

RESUMO

Residential coals are still inevitable using in developing areas in China. Clean coal briquettes, normally using alkaline substance such as lime or red mud (RM) as the additive, were helpful in pollution emission reduction even without changes of stoves. Studies of atmospheric polycyclic aromatic hydrocarbons (PAHs) emission characteristics from RM clear coal combustion were limited. In this study, emission factors (EFs), sources profiles, and health risks of polycyclic aromatic hydrocarbons (PAHs) in PM2.5 were investigated for raw coal chunks and clean coal (with red mud) through combustion experiments. EFs of total PAHs were found to be 160.1 ± 100.9 mg·kg-1 and 19.4 ± 6.1 mg·kg-1 for bituminous and anthracite raw coal chunks (B-C and A-C), respectively. EFs values were highest for parent PAHs (p-PAHs), followed by oxygenated PAHs (o-PAHs), alkylated PAHs (a-PAHs), and nitro PAHs (n-PAHs). EFs of p-PAHs account for 80% and 52% of total PAHs emissions for B-C and A-C, respectively, while those for o-PAHs are 22.9% and 44.9%, demonstrating residential coal combustion as a significant primary source for p-PAHs and o-PAHs. Clean coals were developed through cold-press technology with red mud (RM) as additive, and clean coals with RM contents of 10% are referred to as B-10% (bituminous) and A-10% (anthracite). Compared to raw coals chunks, EFs were reduced from 128.1, 2.5, 29.3 mg·kg-1 and 161.8 µg·kg-1 to 83.5, 1.3, 16.4 mg·kg-1 and 102.2 µg·kg-1 by B-10%, and from 10.1, 0.6, 8.7 mg·kg-1 and 20.6 µg·kg-1 to 11.9, 0.2, 2.4 mg·kg-1 and 15.3 µg·kg-1 by A-10% for p-PAHs, o-PAHs, a-PAHs and n-PAHs, respectively. Diagnostic ratios of 5-Nitroacenaphthene / Acenaphthene (0.02-0.05 for coal, 0.0002 for biomass) can be used to separate residential coal and biomass burning in source analysis. When B-C was replaced by B-10%, both noncancer (0.58 to 0.33 for male, 1.65 to 0.95 for female in hazard quotient) and cancer risks (5.68 × 10-4 to 2.73 × 10-4 for male, 2.63 × 10-3 to 1.27 × 10-3 for female) can be reduced. o-PAHs should be paid more attention because of its high cancer risks caused by 6H-Benzo(C,D)Pyrene-6-One (1.74 × 10-5 for male, 8.07 × 10-5 for female), which are even more than the total risks caused by n-PAHs (3.59 × 10-7 for male, 1.66 × 10-6 for female). Results from this study highlighted the environment and health effects of PAHs originated from residential coal combustion, and proposed an effective way by using clean coal to alleviate the associated negative impacts.


Assuntos
Poluentes Atmosféricos/análise , Utensílios Domésticos , Hidrocarbonetos Policíclicos Aromáticos/análise , China , Carvão Mineral/análise , Monitoramento Ambiental
16.
Environ Pollut ; 263(Pt A): 114386, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32203846

RESUMO

Associations between human exposures to vehicular emissions (VE) and cardiopulmonary diseases have been found, with a dearth of information on particle cytotoxicity. This study exposes human lung alveolar epithelial (A549) cells to PM2.5 (particulate matter with aerodynamic diameter <2.5 µm) samples collected in a tunnel and investigates the oxidative and inflammatory responses. The cytotoxicity factor (CF) is used to normalize the VE cytotoxicity. The emission factors (EFs) were 27.2 ± 12.0 mg vehicle-1 km-1 for PM2.5 and 4.93 ± 1.67 µg vehicle-1 km-1 for measured polycyclic aromatic hydrocarbons (PAHs). Higher EFs were found for high (4-6 rings) than low (2-3 rings) molecular-weight particulate PAHs. PM2.5 VE caused oxidative stress and inflammation of human lung cells. Organic carbon (OC), element carbon (EC), and several PAHs were significantly (p < 0.05) correlated with bioreactivity. Higher CFs were found when diesel vehicle counts were highest during the morning rush hour, implying that diesel-fueled VE were major contributors to cytotoxic effects. This study provides a broader understanding of the toxicity in an engine-exhaust dominated environment.


Assuntos
Poluentes Atmosféricos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento Ambiental , Hong Kong , Humanos , Material Particulado/análise , Emissões de Veículos/análise
17.
Sci Total Environ ; 719: 137547, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32143101

RESUMO

The Ministry of Environmental Protection released a Joint Action Plan for Control of Air Pollution (Hereafter, Joint Action Plan, JAP), to reduce PM2.5 concentrations in the Beijing-Tianjin-Hebei region (BTH) during the winter of 2017. To investigate the effectiveness of the controls, we deployed an aerosol chemical speciation monitor and collected filter samples at Xianghe, a representative site for the BTH, to characterize the aerosol composition during the implementation of the JAP. Those results were compared with earlier data obtained from a literature survey and reanalysis of studies in the BTH. During several pollution episodes in the control period, the major aerosol types changed relative to the earlier studies from sulfate, oxygenated organic aerosol, and coal combustion organic aerosol to nitrate and biomass burning organic aerosol. The dominant secondary inorganic aerosol species during the JAP changed from sulfate to nitrate, and the main source for primary organic aerosol switched from coal combustion to biomass burning. These changes can be explained by the fact that the JAP controls targeted coal combustion and SO2 but not biomass burning or NOx emissions. Our evaluation of the control measures provides a scientific basis for developing new policies in the future.

18.
Proc Natl Acad Sci U S A ; 117(10): 5184-5189, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32094170

RESUMO

Wildfire can influence climate directly and indirectly, but little is known about the relationships between wildfire and climate during the Quaternary, especially how wildfire patterns varied over glacial-interglacial cycles. Here, we present a high-resolution soot record from the Chinese Loess Plateau; this is a record of large-scale, high-intensity fires over the past 2.6 My. We observed a unique and distinct glacial-interglacial cyclicity of soot over the entire Quaternary Period synchronous with marine δ18O and dust records, which suggests that ice-volume-modulated aridity controlled wildfire occurrences, soot production, and dust fluxes in central Asia. The high-intensity fires were also found to be anticorrelated with global atmospheric CO2 records over the past eight glacial-interglacial cycles, implying a possible connection between the fires, dust, and climate mediated through the iron cycle. The significance of this hypothetical connection remains to be determined, but the relationships revealed in this study hint at the potential importance of wildfire for the global climate system.

19.
Sci Total Environ ; 717: 137190, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32062279

RESUMO

Sulfate and nitrate from secondary reactions remain as the most abundant inorganic species in atmospheric particle matter (PM). Their formation is initiated by oxidation (either in gas phase or particle phase), followed by neutralization reaction primarily by NH3, or by other alkaline species such as alkaline metal ions if available. The different roles of NH3 and metal ions in neutralizing H2SO4 or HNO3, however, are seldom investigated. Here we conducted semi-continuous measurements of SO42-, NO3-, NH4+, and their gaseous precursors, as well as alkaline metal ions (Na+, K+, Ca2+, and Mg2+) in wintertime Beijing. Analysis of aerosol acidity (estimated from a thermodynamic model) indicated that preferable sulfate formation was related to low pH conditions, while high pH conditions promote nitrate formation. Data in different mass fraction ranges of alkaline metal ions showed that in some ranges the role of NH3 was replaced by alkaline metal ions in the neutralization reaction of H2SO4 and HNO3 to form particulate SO42- and NO3-. The relationships between mass fractions of SO42- and NO3- in those ranges of different alkaline metal ion content also suggested that alkaline metal ions participate in the competing neutralization reaction of sulfate and nitrate. The implication of the current study is that in some regions the chemistry to incorporate sulfur and nitrogen into particle phase might be largely affected by desert/fugitive dust and sea salt, besides NH3. This implication is particularly relevant in coastal China and those areas with strong influence of dust storm in the North China Plain (NCP), both of which host a number of megacities with deteriorating air quality.

20.
Bull Environ Contam Toxicol ; 104(1): 96-106, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31729560

RESUMO

During the summer of 2015, polycyclic aromatic hydrocarbons (PAHs) in the atmosphere were collected by passive air samplers in typical urban-rural fringe of Wuhan-Ezhou region, Central China. The results showed that 16 kinds of PAHs were ubiquitous with the concentrations of ∑16PAHs from 14.69 to 136.30 ng·m-3 and the mean concentration of 43.03 ng·m-3. Phenanthrene (Phe), fluoranthene (Fla) and pyrene (Pyr) were major components, which accounted for 81% of ∑16PAHs. PAHs atmospheric concentrations presented obvious spatial variation, being significantly related to geographical environment and influenced by anthropogenic activity. Air-soil exchange status of PAHs was discussed according to the fugacity fraction (ff). The results showed that HMW-PAHs behaved as net deposition, while LMW-PAHs were more likely to establish dynamic equilibrium between atmosphere and soil than MMW-PAHs and HMW-PAHs. For some PAHs, such as acenaphthylene (Acy) and anthracene (Ant), the soil acted as second sources of them.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos/análise , Atmosfera , China , Fluorenos , Pirenos , Estações do Ano , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA