Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34812468

RESUMO

Long-term use of antibiotic growth promoter (AGP) in animal production is the main cause of antimicrobial resistance of pathogenic bacteria. Therefore, seeking alternatives to AGP is crucial for animal husbandry. Among all AGP alternatives, probiotics are promising candidates. In this study, two strains of lactic acid bacteria, L. johnsonii 3-1 and L. crispatus 7-4, were isolated from the feces of wild Gallus gallus, which exhibited obvious anti-pathogenic activity and improved the growth performance of broilers. Furthermore, we found that these two strains participated in the lipid metabolism of broilers by reducing the content of TC and TG in ileal epithelial cells and up-regulating the liver AMPKα/PPARα/CPT-1 pathway, which affects abdominal fat deposition. In summary, L. johnsonii 3-1 and L. crispatus 7-4 have the potential to be used as AGP substitutes and participate in the lipid metabolism of broilers to reduce abdominal fat deposition. Importantly, our study reveals for the first time that L. crispatus participates in liver lipid metabolism to reduce abdominal fat deposition in broilers.

2.
Water Res ; 204: 117625, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34530224

RESUMO

Coastal harmful algal blooms (HABs), commonly termed 'red tides', have severe undesirable consequences to the marine ecosystems and local fishery and tourism industries. Increase in nitrogen and/or phosphorus loading is often regarded as the major culprits of increasing frequency and intensity of the coastal HAB; however, fundamental understanding is lacking as to the causes and mechanism of bloom formation despite decades of intensive investigation. In this study, we interrogated the prokaryotic microbiomes of surface water samples collected at two neighboring segments of East China Sea that contrast greatly in terms of the intensity and frequency of Prorocentrum-dominated HAB. Mantel tests identified significant correlations between the structural and functional composition of the microbiomes and the physicochemical state and the algal biomass density of the surface seawater, implying the possibility that prokaryotic microbiota may play key roles in the coastal HAB. A conspicuous feature of the microbiomes at the sites characterized with high trophic state index and eukaryotic algal cell counts was disproportionate proliferation of Vibrio spp., and their complete domination of the functional genes attributable to the dissimilatory nitrate reduction to ammonia (DNRA) pathway substantially enriched at these sites. The genes attributed to phosphorus uptake function were significantly enriched at these sites, presumably due to the Pi-deficiency induced by algal growth; however, the profiles of the phosphorus mineralization genes lacked consistency, barring any conclusive evidence with regard to contribution of prokaryotic microbiota to phosphorus bioavailability. The results of the co-occurrence network analysis performed with the core prokaryotic microbiome supported that the observed proliferation of Vibrio and HAB may be causally associated. The findings of this study suggest a previously unidentified association between Vibrio proliferation and the Prorocentrum-dominated HAB in the subtropical East China Sea, and opens a discussion regarding a theoretically unlikely, but still possible, involvement of Vibrio-mediated DNRA in Vibrio-Prorocentrum symbiosis. Further experimental substantiation of this supposed symbiotic mechanism may prove crucial in understanding the dynamics of explosive local algal growth in the region during spring algal blooms.


Assuntos
Dinoflagelados , Microbiota , Vibrio , Proliferação de Células , Dinoflagelados/genética , Proliferação Nociva de Algas
3.
ACS Appl Mater Interfaces ; 13(34): 40249-40266, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34424682

RESUMO

Disruption of intestinal homeostasis is an important event in the development of inflammatory bowel disease (IBD), and genistein (GEN) is a candidate medicine to prevent IBD. However, the clinical application of GEN is restricted owing to its low oral bioavailability. Herein, a reactive oxygen species (ROS)-responsive nanomaterial (defined as GEN-NP2) containing superoxidase dismutase-mimetic temporally conjugated ß-cyclodextrin and 4-(hydroxymethyl)phenylboronic acid pinacol ester-modified GEN was prepared. GEN-NP2 effectively delivered GEN to the inflammation site and protected GEN from rapid metabolism and elimination in the gastrointestinal tract. In response to high ROS levels, GEN was site-specifically released and accumulated at inflammatory sites. Mechanistically, GEN-NP2 effectively increased the expression of estrogen receptor ß (ERß), simultaneously reduced the expression of proinflammatory mediators (apoptosis-associated speck-like protein containing a CARD (ASC) and Caspase1-p20), attenuated the infiltration of inflammatory cells, promoted autophagy of intestinal epithelial cells, inhibited the secretion of interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α), modulated the gut microbiota, and ultimately alleviated colitis. In addition, the oral administration of these nanoparticles showed excellent safety, thereby providing confidence in the further development of precise treatments for IBD.

4.
Harmful Algae ; 107: 102077, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34456026

RESUMO

Coastal ecosystems are often subjected to anthropogenic disturbances that lead to water quality deterioration and an increase in harmful algal bloom (HAB) events. Using the next-generation molecular tool of 18S rDNA metabarcoding, we examined the community assemblages of HAB species in the Johor Strait, Malaysia between May 2018 and September 2019, covering 19 stations across the strait. The molecular operational taxonomic units (OTUs) of HAB taxa retrieved from the dataset (n = 194) revealed a much higher number of HAB taxa (26 OTUs) than before, with 12 taxa belong to new records in the strait. As revealed in the findings of this study, the diversity and community structure of HAB taxa varied significantly over time and space. The most common and abundant HAB taxa in the strait (frequency of occurrence >70%) comprised Heterosigma akashiwo, Fibrocapsa japonica, Pseudo-nitzschia pungens, Dinophysis spp., Gymnodinium catenatum, Alexandrium leei, and A. tamiyavanichii. Also, our results demonstrated that the HAB community assemblages in the strait were dependent on the interplay of environmental variables that influence by the monsoonal effects. Different HAB taxa, constitute various functional types, occupied and prevailed in different environmental niches across space and time, leading to diverse community assemblages and population density. This study adds to the current understandings of HAB dynamics and provides a robust overview of temporal-spatial changes in HAB community assemblages along the environmental gradients in a tropical eutrophic coastal ecosystem.


Assuntos
Dinoflagelados , Microalgas , Ecossistema , Proliferação Nociva de Algas , Fitoplâncton
5.
Chemosphere ; 280: 130917, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34162105

RESUMO

The effect of organic carbon (OC) quality and quantity on switch between dissimilatory nitrate reduction to ammonium (DNRA) and denitrification (DEN) was studied in biofilter systems. High OC in matrix could promote significantly nitrate (NO3--N) removal due to the reinforce of DEN. Sodium acetate (SA) addition in influent further fueled NO3--N removal in groups with low OC in matrix but increased ammonium (NH4+-N) and nitrite (NO2--N) accumulation in groups with high OC in matrix. This indicated that high OC combined different species, facilitated the DNRA over DEN. Compared to bagasse, corncob was the better suitable OC source in matrix for DEN due to slow and continuous release of OC. Hence, in order to promote NO3--N removal and decline NH4+-N accumulation in biofilters, it is very important to screen suitable OC source (mixed utilization of multiple C sources is recommended) and regulate its dosage (below 80 mg L-1).


Assuntos
Compostos de Amônio , Nitratos , Carbono , Desnitrificação , Nitrogênio , Oxirredução
6.
J Soils Sediments ; : 1-11, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34075310

RESUMO

Purpose: Nitrogen (N) and phosphorus (P) are the key elements leading to eutrophication, and it is important to jointly control N and P release from sediments into the water column. Methods: Different mixed materials including P sorbent, natural organic carbon (C), and an oxidizing agent were applied in a 1-year pilot-scale experiment. Results: The addition of iron-rich (IR) clay and Phoslock agent promoted the formation of iron bound P (Fe(OOH)~P) and calcium bound P (CaCO3~P) in sediments, respectively. IR clay offered more advantages in immobilization of phosphorus as refractory P, and the Phoslock agent more effectively reduced the risk of P release into water, which was expressed as a low equilibrium P concentration (EPC0). Mixtures of sugarcane (SU) detritus and IR clay exhibited high carbohydrate (CHO) contents, which further fuelled both denitrification and dissimilatory nitrate reduction to ammonium (DNRA). This indicated that the SU dosage should be controlled to avoid DNRA over denitrification. Attention should be given to the fact that SU introduction significantly promoted the generation of an anaerobic state, leading to the desorption and release of Fe(OOH)~P, which could be alleviated by using Oxone. Multienzyme activity analysis showed that P and N transformation shifted from P desorption to organic P hydrolysis and from ammonification to denitrification and DNRA, respectively. Conclusion: We recommend the use of P sorbent and organic C combined with oxidizing agents as effective mixed materials for sediment remediation, which could enhance P adsorption and provide electron donors for denitrification, while also avoiding the generation of anoxia.

7.
Mar Environ Res ; 169: 105398, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34171592

RESUMO

Coastal eutrophication is one of the pivotal factors driving occurrence of harmful algal blooms (HABs), whose underlying mechanism remained unclear. To better understand the nutrient regime triggering HABs and their formation process, the phytoplankton composition and its response to varying nitrogen (N) and phosphorus (P), physio-chemical parameters in water and sediment in Johor Strait in March 2019 were analyzed. Surface and sub-surface HABs were observed with the main causative species of Skeletonema, Chaetoceros and Karlodinium. The ecophysiological responses of Skeletonema to the low ambient N/P ratio such as secreting alkaline phosphatase, regulating cell morphology (volume; surface area/volume ratio) might play an important role in dominating the community. Anaerobic sediment iron-bound P release and simultaneous N removal by denitrification and anammox, shaped the stoichiometry of N and P in water column. The decrease of N/P ratio might shift the phytoplankton community into the dominance of HABs causative diatoms and dinoflagellates.


Assuntos
Diatomáceas , Dinoflagelados , Anaerobiose , Eutrofização , Malásia , Nitrogênio/análise , Nutrientes , Fósforo/análise , Fitoplâncton
8.
Microorganisms ; 9(3)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652892

RESUMO

Aquaculture is among the most important and fastest growing agriculture sectors worldwide; however, it generates environmental impacts by introducing nutrient accumulations in ponds, which are possibly different and further result in complex biological processes in the sediments based on diverse farming practices. In this study, we investigated the effects of long-term farming practices of representative aquatic animals dominated by grass carp (GC, Ctenopharyngodon idella) or Chinese mitten crab (CMC, Eriocheir sinensis) on the bacterial community and enzyme activity of sediments from more than 15 years of aquaculture ponds, and the differences associated with sediment properties were explored in the two farming practices. Compared to CMC ponds, GC ponds had lower contents of TC, TN, and TP in sediments, and similar trends for sediment pH and moisture content. Sediment bacterial communities were significantly different between GC and CMC ponds, with higher bacterial richness and diversity in GC ponds. The bacterial communities among the pond sediments were closely associated with sediment pH, TC, and TN. Additionally, the results showed profoundly lower activities of ß-1,4-glucosidase, leucine aminopeptidase, and phosphatase in the sediments of GC ponds than CMC ponds. Pearson's correlation analysis further revealed strong positive correlations between the hydrolytic enzyme activities and nutrient concentrations among the aquaculture ponds, indicating microbial enzyme regulation response to sediment nutrient dynamics. Our study herein reveals that farming practices of fish and crab differently affect bacterial communities and enzymatic activities in pond sediments, suggesting nutrient-driven sediment biological processes in aquaculture ponds for different farming practices.

9.
J Environ Sci (China) ; 103: 255-267, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33743907

RESUMO

In order to better understand the contribution of nutrients regeneration pathway, release potential and transformation pattern to cyanobacterial growth and succession, 7 sampling sites in Lake Chaohu with different bloom degree were studied every two months from February to November 2018. The carbon, nitrogen (N) and phosphorus (P) forms or fractions in surface, interstitial water and sediments as well as extracellular enzymatic activities, P sorption, specific microbial abundance and community composition in sediments were analyzed. P regeneration pathway was dominated by iron-bound P desorption and phosphorus-solubilizing bacteria solubilization in severe-bloom and slight-bloom area respectively, which both resulted in high soluble reactive phosphorus (SRP) accumulation in interstitial water. However, in severe-bloom area, higher P release potential caused the strong P release and algal growth, compared to slight-bloom area. In spring, P limitation and N selective assimilation of Dolichospermum facilitated nitrate accumulation in surface water, which provided enough N source for the initiation of Microcystis bloom. In summer, the accumulated organic N in Dolichospermum cells during its bloom was re-mineralized as ammonium to replenish N source for the sustainable development of Microcystis bloom. Furthermore, SRP continuous release led to the replacement of Dolichospermum by Microcystis with the advantage of P quick utilization, transport and storage. Taken together, the succession from Dolichospermum to Microcystis was due to both the different forms of N and P in water column mediated by different regeneration and transformation pathways as well as release potential, and algal N and P utilization strategies.


Assuntos
Cianobactérias , Microcystis , China , Eutrofização , Lagos , Nutrientes , Fósforo/análise
10.
Front Microbiol ; 12: 542064, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679624

RESUMO

Despite fungi playing an important role in nutrient decomposition in aquatic ecosystems and being considered as vital actors in the ecological processes, they received limited attention regarding the community in aquaculture pond sediments which are extremely important and typically disturbed habitats. Using an ITS1 region of fungal rDNA, this study aimed to investigate sediment fungal communities in fish, crab, and crayfish ponds for decades of farming practices at representative aquaculture regions in the middle Yangtze River basin, China. We then aimed to explore the community patterns associated with species-based farming practices in the ponds at 18 farms. The results showed that the pond sediments harbored more than 9,000 operational taxonomic units. The sediments had significantly higher alpha diversity in crab ponds compared to that in fish and crayfish ponds. The fungal phyla largely belonged to Ascomycota and Chytridiomycota, and the dominance of Rozellomycota over Basidiomycota and Aphelidiomycota was observed. The majority of sediment fungal members were ascribed to unclassified fungi, with higher proportions in fish ponds than crab and crayfish ponds. Further, the fungal communities were markedly distinct among the three types of ponds, suggesting divergent patterns of fungal community assemblages caused by farming practices in aquaculture ponds. The community diversity and structure were closely correlated to sediment properties, especially sediment carbon content and pH. Thus, the distribution and pattern of fungal communities in the sediments appear to primarily depend on species-based farming practices responsible for the resulting sediment carbon content and pH in aquaculture ponds. This study provides a detailed snapshot and extension of understanding fungal community structure and variability in pond ecosystems, highlighting the impacts of farming practices on the assembly and succession of sediment fungal communities in aquaculture ponds.

11.
Water Res ; 193: 116886, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33581400

RESUMO

In order to better understand the pathways and mechanisms of phosphorus (P) supply under different regimes, 12 sampling sites from 4 basins of 2 lakes were studied seasonally from October 2017 to July 2018 in Wuhan City, China. Concentrations of different forms of P and nitrogen (N) in surface and interstitial water, contents of carbon (C), N, P and iron (Fe) compounds as well as related extracellular enzymatic activities, phosphorus sorption, abundance of phosphorus-solubilizing bacteria (PSB), total and specific (containing phosphatase gene) microbial community composition in sediments were analyzed. In lakes with macrophyte dominance, P supply pathway from sediment to water column was blocked. In lakes being early period of regime shifting from macrophyte to algae, exogenous P input was the main P supply mode. In lakes being later period of regime shifting from macrophyte to algae, organic P hydrolysis and calcium-bound P dissociation driven by PSB contributed greatly to P regeneration, which was continuous and trickling. In this process, rapid C and N cycles fueled P regeneration. In lakes with algal dominance, given the significantly higher iron-bound P (Fe(OOH)~P), equilibriums phosphorus concentration and dehydrogenase activity, the main P regeneration pathway might be the desorption of Fe(OOH)~P driven by anoxia, showing the seasonal and pulsed characteristics. In addition, during the process of regime shift from macrophyte to algae, the dominant algal species switched from cyanobacteria to Chlorophyta. P-solubilizing microorganisms correlated with environmental factors, suggesting the coupling of multiple nutrient cycles, especially C, N, P, oxygen (O) and Fe, could effectively increase the pathways diversification and the strength of P regeneration.


Assuntos
Lagos , Poluentes Químicos da Água , China , Eutrofização , Sedimentos Geológicos , Fósforo/análise , Poluentes Químicos da Água/análise
12.
Sci Total Environ ; 758: 143850, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33333298

RESUMO

Eutrophication leads to frequent outbreaks of cyanobacterial blooms, however, the effect of heterotrophic bacteria attached to cyanobacterial cells is unclear. Field investigations were carried out to gain a deeper understanding of the community composition and functional role of heterotrophic bacteria attached to Dolichospermum and Microcystins cells. The significantly positive relationships between Dolichospermum density and total nitrogen (TN) and between Microcystins density and particle nitrogen (PN) indicated the strong nitrogen (N) demand of these two species. The lack of functional genes that mediate the nitrification process in bacteria attached to both Microcystins and Dolichospermum cells indicated that these two genera preferred ammonium (NH4+-N). Dolichospermum cells obtained more available N through N2 fixation, which was expressed by high nitrogenase gene abundance. Bacteria attached to Microcystins cells showed a higher activity of leucine aminopeptidase and a significantly higher abundance of functional genes that mediate dissimilatory nitrate reduction to ammonium (DNRA) than those attached to Dolichospermum cells. The significantly higher abundance of carbon degradation genes and ß-glucosidase activity of bacteria attached to Microcystins cells compared with those of bacteria attached to Dolichospermum cells suggested that abundant organic carbon was bound to Microcystins cells, which is a prerequisite for DNRA. In addition, Microcystins cells exhibited a great advantage in soluble reactive phosphorus (SRP) production through high levels of organic phosphorus (P) hydrolysis associated with high levels of phosphatase genes of attached bacteria. In conclusion, bacteria attached to Microcystins cells performed more important functions on NH4+-N and SRP production through ammonification and DNRA, as well as phosphatase hydrolysis respectively, compared to those attached to Dolichospermum. Thus, algal growth is the result of different variables such as nutrient concentration, their ratio and the microbial ability.


Assuntos
Compostos de Amônio , Cianobactérias , Cianobactérias/genética , Eutrofização , Nitrogênio , Fósforo
13.
Chemosphere ; 257: 127269, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32531490

RESUMO

Various sole and mixed electron donors were tested to promote the denitrification rate and nitrate removal efficiency in biofilter systems with high phosphate and ammonia removal efficiency (92.6% and 95.3% respectively). Compared to sole electron donors, complex organic carbon (bits of wood and straw) substantially improved the denitrification rate and nitrate removal efficiency (from 6.3%-18.5% to35.4%) by shifting the denitrifying microbial community composition, even though the relative abundance of functional genes mediating denitrification decreased. The mixed electron donor combining complex organic carbon with sulfur, iron and CH4 further promoted nitrate removal efficiency by 37.2%. The significantly higher abundance and diversity of bacteria mediating organic carbon decomposition in the treatments with complex organic carbon indicated the continuous production of organic carbon with small molecular weights, which provided sustainable and effective electron donor for denitrification. However, sole sulfur or iron did not effectively promote the denitrification rate and nitrogen removal efficiency, even though the related microbial community had been formed.


Assuntos
Reatores Biológicos/microbiologia , Desnitrificação/fisiologia , Microbiota , Bactérias , Carbono , Elétrons , Metagenoma , Nitratos , Nitrogênio , Óxidos de Nitrogênio , Enxofre
14.
Harmful Algae ; 84: 46-55, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31128812

RESUMO

Dolichospermum (formerly Anabaena) and Microcystis cause harmful cyanobacterial blooms in freshwater ecosystems worldwide. Input reduction of both nitrogen (N) and phosphorus (P) are commonly recognized as basic ways of controlling blooms, but little is known about the roles of nutrients and their using strategy among cyanobacteria in triggering the succession of diazotrophic to non-diazotrophic cyanobacteria. In this study, we investigated in situ responses of cyanobactria to ambient P status during the transition from Dolichospermum flos-aquae to Microcystis spp. in Lake Taihu and Lake Chaohu. While dominant in phytoplankton community, D. flos-aquae experienced P deficiency as evidenced by qualitative detection of extracellular phosphatase via enzyme labeled fluorescence (ELF). The percentage of ELF-labelled D. flos-aquae cells was 33% when it dominated the phytoplankton community, and was 78% when it co-dominated with Microcystis spp., indicating an increase in P deficiency. Meanwhile, no ELF-labelled Microcystis cells were observed while polyphosphate body (PPB) were present, suggesting that Microcystis spp. were not P deficient. Additionally, the percentages of Microcystis cells containing PPB showed an inverted "U-shaped" relationship with concentrations on soluble reactive phosphorus (SRP). To validate the field observation, a laboratory study of the monocultures of the dominant cyanobacteria was conducted. Extracellular alkaline phosphatase activity (APA) and PPB accumulation were regulated by P availability in monocultures of D. flos-aquae. Interestingly, no cell bound extracellular phosphatase was found on Microcystis aeruginasa even in the culture without P supply. Consistently, the expressions of phosphatase encoding gene phoX showed no differences among the treatments. The way in which PPB accumulation occurred in Microcystis spp. in response to P availability in the cultures was similar to that observed in the field, demonstrating a strategy of energy conservation over P accumulation. The competitive advantage of Microcystis spp. was displayed at low P concentrations: where it could rapidly uptake and store inorganic P, which also increased the P deficiency of the coexisting phytoplankton species. Responses of P-transport gene pstS confirmed this hypothesis. The physiological and molecular mechanisms mentioned above enable Microcystis to survive and proliferate in environment with low available P supply more efficiently. In conclusion, different cyanobacterial species have distinct ways of responding to P availability, suggesting that the control of cyanobacterial blooms by targeted nutrient reduction is largely dependent upon the dominant species. P reduction is more effective in controlling diazotrophic cyanobacteria than non-diazotrophic cyanobacteria.


Assuntos
Cianobactérias , Microcystis , Ecossistema , Nitrogênio , Fósforo
15.
Sci Total Environ ; 670: 982-992, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31018440

RESUMO

In coastal lakes the role of microorganisms in driving nutrients regeneration at different water depths and in sediments is not yet fully understood. The dynamics of microbial (algal and bacterial) abundance and bacterial activities involved in organic matter transformation were measured, together with nutrient concentrations, through a microcosm experiment set up using the oligotrophic Faro lake as a study model over a total period of 15 days and with a four-day frequency. Water column at different depths (surface, middle and bottom) and interstitial water obtained by sediment centrifugation were used in appropriate ratios (mixed 1:1 with surface waters) to fill 21-Litre plastic aquaria in order to simulate processes occurring in natural conditions. At early experimental period, the sharp decrease of dissolved organic nutrients and the abundant production of leucine aminopeptidase (LAP) and alkaline phosphatase (AP) in correspondence with high phytoplankton abundance in bottom and interstitial water reflected the relevance of organic nutrients for inorganic nutrients regeneration and phytoplankton growth. Size fractionation of LAP and AP as well as the positive relationship between microbial compartments suggested that bacteria and phytoplankton worked in close reciprocal synergy, and coupling of nitrogen and phosphorus regeneration, especially in bottom and interstitial waters, was observed. At later experimental period, the change in bacterial community, especially the increase of filamentous shaped cells, together with a simultaneous increase of protozoan abundance indicated that nutrient replenishment made the microbial loop structure more competitive. In oligotrophic conditions, such as those in Faro lake, organic nutrient enrichment of bottom and interstitial waters was associated with changes in the bacterial community, with consequent stimulation of extracellular enzymes to support phytoplankton growth. Nutrient availability from microbial regeneration resulted in an increased complexity of the microbial loop structure, with bacteria and phytoplankton adopting specific strategies to respond to the changing environment.


Assuntos
Eutrofização , Lagos/química , Fitoplâncton/metabolismo , Poluentes Químicos da Água/análise , Bactérias/metabolismo , Lagos/microbiologia , Nitrogênio/análise , Fósforo/análise , Sicília
16.
Microb Ecol ; 77(2): 277-287, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29951743

RESUMO

Bacterioplankton are both primary producers and primary consumers in aquatic ecosystems, which were commonly investigated to reflect environmental changes, evaluate primary productivity, and assess biogeochemical cycles. However, there is relatively less understanding of their responses to anthropogenic disturbances such as constructions of dams/tunnels/roads that may significantly affect the aquatic ecosystem. To fill such gap, this study focused on the bacterioplankton communities' diversity and turnover during a tunnel construction across an urban lake (Lake Donghu, Wuhan, China), and five batches of samples were collected within 2 months according to the tunnel construction progress. Results indicated that both resources and predator factors contributed significant to the variations of bacterioplankton communities, but the closed area and open areas showed different diversity patterns due to the impacts of tunnel construction. Briefly, the phytoplankton, TN, and TP in water were still significantly correlated with the bacterioplankton composition and diversity like that in normal conditions. Additionally, the organic matter, TN, and NH4-N in sediments also showed clear effects on the bacterioplankton. However, the predator effects on the bacterioplankton in the closed-off construction area mainly derived from large zooplankton (i.e., cladocerans), while small zooplankton such as protozoa and rotifers are only responsible for weak predator effects on the bacterioplankton in the open areas. Further analysis about the ecological driving forces indicated that the bacterioplankton communities' turnover during the tunnel construction was mainly governed by the homogeneous selection due to similar environments within the closed area or the open areas at two different stages. This finding suggests that bacterioplankton communities can quickly adapt to the environmental modifications resulting from tunnel construction activities. This study can also give references to enhance our understanding on bacterioplankton communities' response to ecological and environmental changes due to intensification of construction and urbanization in and around lake ecosystems.


Assuntos
Bactérias/isolamento & purificação , Lagos/microbiologia , Plâncton/isolamento & purificação , Animais , Bactérias/classificação , Bactérias/genética , Biodiversidade , China , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/parasitologia , Lagos/parasitologia , Filogenia , Plâncton/classificação , Plâncton/genética , Zooplâncton/classificação , Zooplâncton/genética , Zooplâncton/isolamento & purificação
17.
Environ Sci Pollut Res Int ; 25(31): 31603-31615, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30206832

RESUMO

Several Italian and Chinese temperate lakes with soluble reactive phosphorus concentrations < 0.015 mg L-1 were studied to estimate nitrogen and phosphorus regeneration mediated by microbial decomposition and possible different mechanisms driven by prevailing oligo- or eutrophic conditions. Leucine aminopeptidase (LAP), beta-glucosidase (GLU) and alkaline phosphatase (AP), algal, and bacterial biomass were related to trophic and environmental variables. In the eutrophic lakes, high algal and particulate organic carbon concentrations stimulated bacterial respiration (> 20 µg C L-1 h-1) and could favor the release of inorganic phosphorus. High extracellular enzyme activities and phosphorus solubilizing bacteria abundance in sediments accelerated nutrient regeneration. In these conditions, the positive GLU-AP relationship suggested the coupling of carbon and phosphorus regeneration; an efficient phosphorus regeneration and high nitrogen levels (up to 0.067 and 0.059 mg L-1 NH4 and NO3 in Italy; 0.631 and 1.496 mg L-1 NH4 and NO3 in China) led to chlorophyll a peaks of 14.9 and 258.4 µg L-1 in Italy and China, respectively, and a typical algal composition. Conversely, in the oligo-mesotrophic lakes, very low nitrogen levels (in Italy, 0.001 and 0.005 mg L-1 NH4 and NO3, respectively, versus 0.053 and 0.371 mg L-1 in China) induced high LAP, while low phosphorus (33.6 and 46.3 µg L-1 total P in Italy and China, respectively) led to high AP. In these lakes, nitrogen and phosphorus regeneration were coupled, as shown by positive LAP-AP relationship; however, the nutrient demand could not be completely met without the supply from sediments, due to low enzymatic activity and phosphorus solubilizing bacteria found in this compartment.


Assuntos
Lagos/química , Nitrogênio/análise , Fósforo/análise , Poluentes Químicos da Água/análise , Fosfatase Alcalina/metabolismo , Biomassa , Carbono , China , Clorofila A , Eutrofização , Itália , Lagos/microbiologia , Leucil Aminopeptidase/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Poluentes Químicos da Água/metabolismo
18.
Environ Sci Technol ; 52(10): 5653-5661, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29688011

RESUMO

Dolichospermum flos-aquae (formerly Anabaena flos-aquae) is a diazotrophic cyanobacterium causing harmful blooms worldwide, which is partly attributed to its capacity to compete for nitrogen (N) and phosphorus (P). Preventing the blooms by reducing P alone or both N and P has caused debate. To test the effects alone and together on the growth of cyanobacteria, we performed culture experiments in different eutrophication scenarios. N2 fixation in terms of heterocyst density, nitrogenase activity and nifH expression increased significantly in P-replete cultures, suggesting that P enrichment facilitates N2 fixation. Correspondingly, the expression of genes involved in P uptake, e.g., those involved in P-transport ( pstS) and the hydrolysis of phosphomonoesters ( phoD), was upregulated in P-deficient cultures. Interestingly, N addition enhanced not only the expression of these genes but also polyphosphate formation and alkaline phosphatase activity in P-deficient cultures relative to the P-replete cultures, as evidenced by qualitative (enzyme-labeled fluorescence) and quantitative (fluorogenic spectrophotometry) measurements. Furthermore, after N addition, cell activity and growth increased in the P-deficient cultures, underscoring the risk of N enrichment in P-limited systems. The eco-physiological responses shown here help further our understanding of the mechanism of N and P colimitation and underscore the importance of dual N and P reduction in controlling cyanobacterial blooms.


Assuntos
Anabaena flos-aquae , Fósforo , Eutrofização , Nitrogênio , Nutrientes
19.
Sci Total Environ ; 630: 1071-1077, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29554728

RESUMO

The over-enrichment of lake waters with nitrogen (N) and phosphorus (P) has become a serious environmental problem, but modes of change in stoichiometry and enzymatic regeneration along trophic gradients are largely unknown. Seasonal variations in the kinetics of extracellular aminopeptidase (LAP) and alkaline phosphatase (AP), together with the composition of phytoplankton and concentrations of N and P, were examined from Jun 2013 to September 2014 in a Chinese shallow lake in which two basins had contrasting trophic states. The turbid basin had a significantly higher concentration of chlorophyll a and lower ratios of N to P. In parallel, the turnover time of organic N mediated by LAP (LAPT) was significantly shorter, and its maximum velocity (Vmax) was significantly higher compared to those in the clear basin. Considering data from both basins, there were linear decreases in N/P and the ratios between dissolved inorganic N and total N with an increasing trophic state index, coupled with a significantly positive relationship between N/P and LAPT. Additionally, with decreasing TN/TP, the Michaelis constant (Km) of the AP increased linearly, reducing the efficiency of P regeneration. In contrast, the Km value of LAP decreased, and Vmax increased, which enhanced N mineralization by simultaneously increasing the reaction velocity and improving the affinity for substrate. Additionally, the Km value of LAP was significantly related to that of AP and the ammonium concentration. Thus, substrate affinity acted as a key factor modifying the pathways of enzymatic degradation of organic N and P according to their stoichiometry in the water column. Phytoplankton composition was directly linked to LAPT. Overall, this study seemed to be the first to connect a stoichiometric shift of N and P with kinetics of extracellular enzymes responsible for their regeneration along trophic gradients, presenting an additional pathway to overcome nitrogen deficiency in eutrophic lakes.


Assuntos
Nitrogênio/análise , Fósforo/análise , Poluentes Químicos da Água/análise , Clorofila/análise , Clorofila A , Biomarcadores Ambientais , Monitoramento Ambiental , Lagos/química , Fitoplâncton/metabolismo
20.
Sci Total Environ ; 627: 1294-1302, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30857093

RESUMO

To explore the relationship and cause and effect between eutrophication and the nitrogen (N)/phosphorus (P) ratio, samples from 38 lakes in Wuhan City, China, with differing degrees of eutrophication, were collected for nutrient levels and extracellular enzyme activities (EEA) in the water column from July 2011 to November 2011. The phosphorus fraction, abundance and potential denitrification rate (PDR) as well as community composition of nirS-type denitrifier in sediments of five typical lakes were further analyzed. A higher trophic level index (TSI) corresponded to a lower N/P ratio, which can be attributed to a loss of N and an increase in P. Specifically, in more eutrophic lakes, the enrichment of total organic carbon and all forms of P in sediments could fuel PDR by shaping community composition and increasing the abundance of nirS-type denitrifier as evidenced by correlation and redundancy analysis, ultimately resulting in a loss of N. Meanwhile, iron-bound phosphorus release induced by anoxia and the hydrolysis of organic P accounted for the observed increase of P in the water column. The lower N/P ratio facilitated the production of leucine aminopeptidase, which was unexpectedly induced by high P but not by low N. Similarly, alkaline phosphatase was induced by high N but not by low P. These findings indicate a mutual coupling and interplay between N and P cycling and confirm our hypothesis that P accumulation accelerates N loss in the process of eutrophication.


Assuntos
Monitoramento Ambiental , Eutrofização , Nitrogênio/análise , Fósforo/análise , Poluentes Químicos da Água/análise , China , Lagos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...