Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.050
Filtrar
1.
Food Chem ; 371: 131383, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808776

RESUMO

Previously we reported the cytoprotective effects of polyphenols rich in hydroxyl groups against ZnO nanoparticles (NPs). This study used RNA-sequencing to evaluate the toxicity of ZnO NPs and epigallocatechin gallate (EGCG) to 3D Caco-2 spheroids. EGCG altered the colloidal stability of ZnO NPs, shown as the changes of atomic force microscopic height, solubility in cell culture medium, and hydrodynamic sizes. EGCG almost completely reversed ZnO NP-induced cytotoxicity, and consistently, alleviated ZnO NP-induced gene ontology (GO) terms and genes related with apoptosis. EGCG also modestly decreased intracellular Zn ions and changed GO terms and genes related with endocytosis/exocytosis in ZnO NP-exposed spheroids. Meanwhile, EGCG changed ZnO NP-induced alteration of GO terms and genes related with the functions of mitochondria, endoplasmic reticulum and lysosomes. We concluded that EGCG alleviated the cytotoxicity of ZnO NPs to 3D Caco-2 spheroids by altering NPs' colloidal properties and the pathways related with internalization and organelle dysfunction.

2.
J Ethnopharmacol ; 283: 114749, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34666140

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Baicalin (BI) is an important biologically active flavonoid isolated from the root of Scutellaria radix (Huang Qin). Traditionally Scutellaria radix was the common drug of dysentery. As the main flavonoid compound, there is a distribution tendency of baicalin to the intestinal tract and it has a protective effect on the gastrointestinal tract. AIM OF THE REVIEW: This review aims to compile up-to-date and comprehensive information on the efficacy of baicalin in vitro and in vivo, about treating inflammatory bowel disease. Relevant information on the therapeutic potential of baicalin against inflammatory bowel disease was collected from the Web of Science, Pubmed and so on. Additionally, a few books and magazines were also consulted to get the important information. RESULTS: The mechanisms of baicalin against inflammatory bowel disease mainly include anti-inflammation, antioxidant, immune regulation, maintenance of intestinal barrier, maintenance of intestinal flora balance. Also, BI can relieve parts of extraintestinal manifestations (EIMs), and prevent colorectal cancer. CONCLUSION: Baicalin determined the promising therapeutic prospects as potential supplementary medicines for the treatment of IBD.

3.
ACS Omega ; 6(42): 27994-28003, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34722999

RESUMO

A series of graphene oxide (GO)/lanthanum titanate (La2Ti2O7, LTO) fiber composites were prepared through a hydrothermal method. The LTO fibers were homogeneously dispersed between the GO sheets. The structure and micromorphology of the GO/LTO composites were systematically studied. The composite exhibited a high specific capacitance of 900.6 F g-1 at a current density of 1 A g-1 in the 1 M H2SO4 and 10 wt % sucrose aqueous solution as the electrolyte. With the extended potential window of 1.8 V, the fabricated asymmetric supercapacitor device delivered a maximum energy density of 94.0 Wh kg-1 at a power density of 750.1 W kg-1. The GO/LTO composites could be promising materials for energy storage.

4.
Biomacromolecules ; 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34723499

RESUMO

Hyaluronic acid (HA) based hydrogels are one of most functional natural biomaterials in the field of cartilage tissue engineering (CTE). Even with the promising advantages of HA hydrogels, the complicated mechanical properties of the native cartilage have not been realized, and fabricating HA hydrogels with excellent mechanical properties to make them practical in CTE still remains a current challenge. Here, a strategy that integrates hydrogels and nanomaterials is shown to form a HA hydrogel with sufficient mechanical loading for cartilage tissue production and recombination. Cellulose nanofibrils (CNFs) are promising nanomaterial candidates as they possess high mechanical strength and excellent biocompatibility. In this study, we developed methacrylate-functionalized CNFs that are able to photo-crosslink with methacrylated HA to fabricate HA/CNF nanocomposite hydrogels. The present composite hydrogels with a compressive modulus of 0.46 ± 0.05 MPa showed adequate compressive strength (0.198 ± 0.009 MPa) and restorability, which can be expected to employ as a stress-bearing tissue such as articular cartilage. Besides, this nanocomposite hydrogel could provide a good microenvironment for bone marrow mesenchymal stem cell proliferation, as well as chondrogenic differentiation, and exhibit prominent repair effect in the full-thickness cartilage defect model of SD rats. These results suggest that the HA/CNF nanocomposite hydrogel creates a new possibility for fabricating a scaffold in CTE.

5.
Pestic Biochem Physiol ; 179: 104956, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34802535

RESUMO

Green foxtail [Setaria viridis (L.) P.Beauv.] is a troublesome grass weed that is widely distributed in maize (Zea mays L.) fields across China. Many populations of S. viridis have evolved resistance to the acetolactate synthase (ALS)-inhibiting herbicide nicosulfuron. The objectives of this research were to confirm nicosulfuron resistance in these populations and to investigate the basis of nicosulfuron resistance. Whole-plant dose-response experiments showed 6 out of 13 S. viridis populations were highly resistance (20-30 times) to nicosulfuron. Sequencing of the ALS gene revealed two amino acid mutations, Asp-376-Glu and Pro-197-Ala, in the nicosulfuron-resistant populations. A malathion pretreatment study revealed that the R376 and R197 subpopulations might have cytochrome P450s-mediated herbicide metabolic resistance. The resistant populations were cross-resistant to imazethapyr but sensitive to topramezone and quizalofop-p-ethyl. This is the first report of resistance to ALS inhibitors conferred by target site mutations (Asp-376-Glu or Pro-197-Ser) and possible cytochrome P450s-involved metabolism in S. viridis.


Assuntos
Acetolactato Sintase , Herbicidas , Setaria (Planta) , Acetolactato Sintase/genética , Sistema Enzimático do Citocromo P-450/genética , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Mutação , Piridinas , Compostos de Sulfonilureia
6.
J Hazard Mater ; : 127704, 2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34799167

RESUMO

Titanium dioxide (TiO2) nanomaterials have been shown to promote atherosclerosis through endothelial dysfunction. This study investigated the toxicity of TiO2 nanosheets (NSs) to vascular smooth muscle cells (VSMCs), one of the pivotal cells involved in all stages of atherosclerosis. Only a high concentration of TiO2 NSs (128 µg/mL) modestly induced cytotoxicity by decreasing thiols. RNA-sequencing data revealed that 64 µg/mL TiO2 NSs significantly down-regulated 94 genes and up-regulated 174 genes, respectively. Gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to SMC function and lipid metabolism were altered. TiO2 NSs increased nuclear factor kappa B subunit 2 (NFKB2), which led to a decrease in VSMC marker actin alpha 2, smooth muscle (ACTA2). On the other hand, macrophage marker CD36 and fatty acid synthase (FASN) proteins were increased. Additionally, TiO2 NSs induced inflammatory cytokines and lipid accumulation, and these effects were curtailed by NFKB inhibitor - triptolide. Furthermore, repeated TiO2 NS injection (5 mg/kg BW, once a day for 5 continuous days) into ICR mice led to increased NFKB2, CD36 and FASN, with a decreased ACTA2. Our results suggested that TiO2 NSs promoted the transformation of VSMCs into foam cells through the up-regulation of NFKB2.

7.
Cell Biol Toxicol ; 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34766255

RESUMO

Although the neurotoxicity of ZnO nanoparticles (NPs) has been evaluated in animal and nerve cell culture models, these models cannot accurately mimic human brains. Three-dimensional (3D) brain organoids based on human-induced pluripotent stem cells have been developed to study the human brains, but this model has rarely been used to evaluate NP neurotoxicity. We used 3D brain organoids that express cortical layer proteins to investigate the mechanisms of ZnO NP-induced neurotoxicity. Cytotoxicity caused by high levels of ZnO NPs (64 µg/mL) correlated with high intracellular Zn ion levels but not superoxide levels. Exposure to a non-cytotoxic concentration of ZnO NPs (16 µg/mL) increased the autophagy-marker proteins LC3B-II/I but decreased p62 accumulation, whereas a cytotoxic concentration of ZnO NPs (64 µg/mL) decreased LC3B-II/I proteins but did not affect p62 accumulation. Fluorescence micro-optical sectioning tomography revealed that 64 µg/mL ZnO NPs led to decreases in LC3B proteins that were more obvious at the outer layers of the organoids, which were directly exposed to the ZnO NPs. In addition to reducing LC3B proteins in the outer layers, ZnO NPs increased the number of micronuclei in the outer layers but not the inner layers (where LC3B proteins were still expressed). Adding the autophagy flux inhibitor bafilomycin A1 to ZnO NPs increased cytotoxicity and intracellular Zn ion levels, but adding the autophagy inducer rapamycin only slightly decreased cellular Zn ion levels. We conclude that high concentrations of ZnO NPs are cytotoxic to 3D brain organoids via defective autophagy and intracellular accumulation of Zn ions.

8.
Int Urol Nephrol ; 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34783980

RESUMO

PURPOSE: To evaluate the effects of manganese superoxide dismutase (Mn-SOD) from thermophilic bacterium HB27 (name as Tt-SOD) on chemical cystitis. METHODS: Control and experimental rats were infused by intravesical saline or hydrochloric acid (HCl) on the first day of the experiments. Saline, sodium hyaluronate (SH) or Tt-SOD were infused intravesically once a day for three consequent days. On the fifth day, the rats were weighted and sacrificed following a pain threshold test. The bladder was harvested for histological and biochemical analyses. RESULTS: Tt-SOD could reduce the bladder index, infiltration of inflammatory cells in tissues, serum inflammatory factors and SOD levels, mRNA expression of inflammatory factors in tissues, and increase perineal mechanical pain threshold and serum MDA and ROS levels in HCl-induced chemical cystitis. Furthermore, Tt-SOD alleviated inflammation and oxidative stress by the negative regulation of the NF-κB p65 and p38 MAPK signaling pathway. CONCLUSIONS: Intravesical instillation of Tt-SOD provides protective effects against HCl-induced cystitis.

9.
Biomater Sci ; 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34792044

RESUMO

Wound healing is a complex dynamic process. During the occurrence of skin injury, the excessive reactive oxygen species (ROS) level is associated with sustained inflammatory response, which limits efficient wound repair. Although multifunctional hydrogels are considered ideal wound dressings due to their unique advantages, the development of hydrogel dressings with rapid gelling rates, shape adaptation, and antioxidant function is still a vital challenge. In this work, a ROS-responsive injectable polyethylene glycol hydrogel containing thioketal bonds (PEG-TK hydrogel) was synthesized and utilized to deliver epidermal growth factor (EGF). We adopted bio-orthogonal click chemistry for crosslinking the polymer chains to obtain the EGF@PEG-TK hydrogel with fast gelation time, injectability and shape-adaptability. More interestingly, the thioketal bonds in the PEG-TK hydrogel not only scavenged excessive ROS in the wound sites but also achieved responsive and controlled EGF release to facilitate regeneration. The EGF@PEG-TK hydrogel treatment offered the benefits of protecting cells from oxidative stress, accelerating wound closure, and reducing scar formation in the full-thickness skin defect model. This work provides a promising strategy for developing antioxidant hydrogel dressing for facilitating the repair of wounds.

10.
J Phys Chem Lett ; : 11280-11287, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34767373

RESUMO

Zeolitic imidazolate frameworks (ZIFs), widely regarded as promising materials for application in catalysis and separation, hold an increasingly significant position in drug delivery systems for their high drug loading capacity. Focused specifically on the rational design of targeting and bioresponsive nanovehicles, a neuropeptide Y1 receptor ligand (Y1L)-modified cell membrane camouflaged bioresponsive ZIF system (Y1L-RBC@ZIF-90@Ce6) was constructed for targeted photodynamic therapy of breast cancer. The biomimetic ZIF-based nanocarrier enhanced tumor accumulation by both neuropeptide Y1 receptor-targeted guidance and long-term stability. Y1L served as a good ligand-mediated selective targeting molecule for breast cancer, and red blood cell membrane-camouflaged nanocomposites displayed favorable biocompatibility. With the dual response of the ZIF to pH and adenosine triphosphate, the stimulus responsive photosensitizer Chlorin e6 delivery system effectively suppressed tumors in vivo. This work offers a platform for developing much safer and more efficient photodynamic therapy for the treatment of Y1R-overexpressed breast cancer.

11.
Reprod Biol Endocrinol ; 19(1): 168, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753504

RESUMO

BACKGROUND: Diabetes mellitus (DM), a chronic metabolic disease, severely impairs male reproductive function. However, the underpinning mechanisms are still incompletely defined, and there are no effective strategies or medicines for these reproductive lesions. Icariin (ICA), the main active component extracted from Herba epimedii, is a flavonoid traditionally used to treat testicular dysfunction. Whether ICA can improve male reproductive dysfunction caused by DM and its underlying mechanisms are still unclear. In this study, by employing metformin as a comparative group, we evaluated the protective effects of ICA on male reproductive damages caused by DM and explored the possible mechanisms. METHODS: Rats were fed with a high fat diet (HFD) and then intraperitoneally injected with streptozotocin (STZ) to induce diabetes. Diabetic rats were randomly divided into T2DM + saline group, T2DM + metformin group and T2DM + ICA group. Rats without the treatment of HFD and STZ were used as control group. The morphology of testicular tissues was examined by histological staining. The mRNA expression levels were determined by quantitative real-time PCR. Immunostaining detected the protein levels of proliferating cell nuclear antigen (PCNA), hypoxia-inducible factor 1-alpha (HIF-1α) and sirtuin 1 (SIRT1) in testicular tissues. TUNEL assay was performed to determine cell apoptosis in the testicular tissues. The protein expression levels of HIF-1α and SIRT1 in the testicular tissues were determined by western blot assay. RESULTS: ICA effectively improved male reproductive dysfunction of diabetic rats. ICA administration significantly decreased fasting blood glucose (FBG) and insulin resistance index (IRI). In addition, ICA increased testis weight, epididymis weight, sperm number, sperm motility and the cross-sectional area of seminiferous tubule. ICA recovered the number of spermatogonia, primary spermatocytes and Sertoli cells. Furthermore, ICA upregulated the expression of PCNA, activated SRIT1-HIF-1α signaling pathway, and inhibited intrinsic mitochondria dependent apoptosis pathway by upregulating the expression of Bcl-2 and downregulating the expression of Bax and caspase 3. CONCLUSION: These results suggest that ICA could attenuate male reproductive dysfunction of diabetic rats possibly via increasing cell proliferation and decreasing cell apoptosis of testis. ICA potentially represents a novel therapeutic strategy against DM-induced testicular damages.

12.
13.
Nanoscale ; 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34761764

RESUMO

Polypyrrole (PPy) nanoparticles have been widely studied in tumor photothermal therapy (PTT) for their significant photostability, good biocompatibility, and excellent photothermal performance. Herein, we report bovine serum albumin (BSA) stabilized PPy that were mineralized by MnO2 nanozyme on the surface (PPy@BSA-MnO2) to achieve synergistic photothermal and chemodynamic therapy (CDT) for breast cancer. In this multifunctional nanoplatform, the surface-loaded MnO2 undergoes a redox reaction with glutathione (GSH) to generate glutathione disulfide (GSSG) and Mn2+. Then, Mn2+ can convert H2O2 into a highly cytotoxic ˙OH to achieve chemodynamic therapy (CDT) and possess good magnetic resonance (MR) T1-weighted imaging capabilities to realize contrast imaging of the 4T1 tumor-bearing mouse models. In addition, PPy nanoparticles can efficiently convert near-infrared light energy into heat and achieve PTT. Most importantly, PPy@BSA-MnO2 nanoprobes have excellent in vitro 4T1 cell-killing effect and in vivo tumor-suppressive properties. The acute toxicity assessment results indicate that PPy@BSA-MnO2 nanoprobes have good biological safety. Therefore, the as-prepared multifunctional PPy@BSA-MnO2 nanoprobes possess excellent performance to promote MRI-guided PTT/CDT synergistic therapy for breast cancer treatment and have extensive clinical transformation and application prospects.

14.
J Appl Toxicol ; 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34633093

RESUMO

Recently, we reported that titanium dioxide (TiO2 ) materials activated endothelial cells via Kruppel-like factor (KLF)-mediated nitric oxide (NO) dysfunction, but the roles of physical properties of materials are not clear. In this study, we prepared nanobelts from P25 particles and compared their adverse effects to human umbilical vein endothelial cells (HUVECs). TiO2 nanobelts had belt-like morphology but comparable surface areas as P25 particles. When applied to HUVECs, P25 particles or nanobelts did not induce cytotoxicity, although nanobelts were much more effective to increase intracellular Ti element concentrations compared the same amounts of P25 particles. Only nanobelts significantly induced THP-1 adhesion onto HUVECs. Consistently, nanobelts were more significant to induce the expression of intracellular adhesion molecule-1 (ICAM1) and the release of soluble ICAM-1 (sICAM-1), indicating that nanobelts were more potent to induce endothelial activation in vitro. As the mechanisms for endothelial activation, both P25 and nanobelts reduced the generation of intracellular NO as well as the expression of NO regulators KLF2 and KLF4. Combined, the results from this study indicated that the different morphologies of P25 particles and nanobelts only changed their internalization into HUVECs but showed minimal impact on KLF-mediated NO signaling pathways.

15.
ACS Omega ; 6(38): 24720-24730, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34604654

RESUMO

Although supercapacitors are considered to play a vital role in flexible electronic devices, there are still some problems that need to be overcome, such as low energy density and narrow electrochemical stability windows in aqueous electrolytes. Herein, we have successfully synthesized a series of Sr-modified La2Zr2O7 (LZO-x) nanofibers as a new electrode material by a facile electrospinning technique. To determine the best doping sample, the changes in structures and electrochemical performances of La2Zr2O7 (LZO-x) nanofibers with various Sr contents are investigated carefully. Then, the LZO-0.2 sample shows the highest capacitance (1445 mF·cm-2). Furthermore, we also develop a low-cost superconcentrated electrolyte, which achieves a wide electrochemical stability window of 2.7 V using a working electrode (LZO-0.2). Finally, we use the LZO-0.2 electrode and the superconcentrated electrolyte to fabricate a flexible supercapacitor device, which shows an excellent capacitance of 175 F·g-1 at a current density of 1.15 A·g-1. Moreover, the aqueous device has excellent cycle stability and outstanding flexibility, and the energy density of this device is 177.2 Wh·kg-1 and the corresponding power density is 1557.7 W·kg-1.

16.
J Cancer ; 12(21): 6372-6382, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659527

RESUMO

Background: The Warburg effect is closely associated with malignant phenotypes and poor prognosis in gastric cancer. CD73 is a glycosylphosphatidylinositol (GPI) anchored cell surface protein that functions as an oncogene in a variety of human cancers. However, the relationship between CD73 and the Warburg effect has yet to be fully understood. Methods: Integrative analysis was performed to identify glycolysis-related genes in gastric cancer. Loss-of-function and gain-of-function are performed to demonstrate the roles of CD73 in gastric cancer cell proliferation and glycolysis. Cell biological, molecular, and biochemical approaches are used to uncover the underlying mechanism. Results: In this study, we find that CD73 is a glycolysis-associated gene and is induced by hypoxia in gastric cancer. Genetic silencing of CD73 reduces gastric cancer cell proliferation and glycolytic ability. Opposite effects were observed by CD73 overexpression. Importantly, pharmacological inhibition of CD73 activity by APCP inhibits tumor growth, which can be largely compromised by the addition of adenosine, suggesting an enzyme activity-dependent effect of CD73 in gastric cancer. Furthermore, hijacking tumor glycolysis by 2-DG or galactose largely abrogated the oncogenic roles of CD73, indicating that CD73 promotes tumor growth in a glycolysis-dependent manner in gastric cancer. By the subcutaneous xenograft model, we confirmed the promotive roles of CD73 in regulating cell proliferation and glycolysis in gastric cancer. Conclusions: This study provides strong evidence of the involvement of CD73 in the Warburg effect and indicates that it could be a novel antitumor strategy to target tumor metabolism in gastric cancer.

17.
Am J Transl Res ; 13(9): 10439-10448, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650713

RESUMO

OBJECTIVE: This research aimed to probe into the effect of miR-145-5p in psoriasis by regulating Wnt/ß-catenin. METHODS: A total of 45 psoriasis patients treated in our hospital were enrolled into an observation group (OG), and other 40 healthy individuals in physical examination over the same period were enrolled into a control group (CG). miR-145-5p in both groups was quantified, and its value in diagnosis and recurrence prediction of psoriasis was analyzed. Additionally, miR-145-5p was transfected into HaCat cells to analyze the biological behaviors of transfected cells, and factors for Wnt/ß-catenin pathway inhibition were injected into cells to detect its protein expression in the cells, so as to verify the regulation of miR-145-5p on the Wnt/ß-catenin pathway. RESULTS: with low expression in the serum of psoriasis patients (P<0.05), miR-145-5p was of great application value for diagnosis and recurrence prediction. In the inhibition group, miR-145-5p increased (P<0.05), while Wnt/ß-catenin pathway-related proteins decreased (P<0.05). Compared with untreated HaCat cells, the protein expression in HaCat cells treated with XAV-939 decreased (P<0.05). There was no notable difference between the miR-145-5p-mimics+XAV-939 group and the empty vector group in cell proliferation, apoptosis rate, and expression of Wnt3a, Wnt5a, and ß-catenin proteins (all P>0.05); but compared with both groups, the miR-145-5p-mimics group showed lower proliferation activity, higher apoptosis rate, and higher expression of Wnt3a, Wnt5a, and ß-catenin proteins (all P<0.05). CONCLUSION: Up-regulating miR-145-5p can activate the Wnt ß-catenin signal pathway, thus inhibiting psoriasis progression.

18.
NPJ Digit Med ; 4(1): 154, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711955

RESUMO

The evidence of the impact of traditional statistical (TS) and artificial intelligence (AI) tool interventions in clinical practice was limited. This study aimed to investigate the clinical impact and quality of randomized controlled trials (RCTs) involving interventions evaluating TS, machine learning (ML), and deep learning (DL) prediction tools. A systematic review on PubMed was conducted to identify RCTs involving TS/ML/DL tool interventions in the past decade. A total of 65 RCTs from 26,082 records were included. A majority of them had model development studies and generally good performance was achieved. The function of TS and ML tools in the RCTs mainly included assistive treatment decisions, assistive diagnosis, and risk stratification, but DL trials were only conducted for assistive diagnosis. Nearly two-fifths of the trial interventions showed no clinical benefit compared to standard care. Though DL and ML interventions achieved higher rates of positive results than TS in the RCTs, in trials with low risk of bias (17/65) the advantage of DL to TS was reduced while the advantage of ML to TS disappeared. The current applications of DL were not yet fully spread performed in medicine. It is predictable that DL will integrate more complex clinical problems than ML and TS tools in the future. Therefore, rigorous studies are required before the clinical application of these tools.

19.
BMC Med Inform Decis Mak ; 21(Suppl 1): 286, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663276

RESUMO

BACKGROUND: Protection of privacy data published in the health care field is an important research field. The Health Insurance Portability and Accountability Act (HIPAA) in the USA is the current legislation for privacy protection. However, the Institute of Medicine Committee on Health Research and the Privacy of Health Information recently concluded that HIPAA cannot adequately safeguard the privacy, while at the same time researchers cannot use the medical data for effective researches. Therefore, more effective privacy protection methods are urgently needed to ensure the security of released medical data. METHODS: Privacy protection methods based on clustering are the methods and algorithms to ensure that the published data remains useful and protected. In this paper, we first analyzed the importance of the key attributes of medical data in the social network. According to the attribute function and the main objective of privacy protection, the attribute information was divided into three categories. We then proposed an algorithm based on greedy clustering to group the data points according to the attributes and the connective information of the nodes in the published social network. Finally, we analyzed the loss of information during the procedure of clustering, and evaluated the proposed approach with respect to classification accuracy and information loss rates on a medical dataset. RESULTS: The associated social network of a medical dataset was analyzed for privacy preservation. We evaluated the values of generalization loss and structure loss for different values of k and a, i.e. [Formula: see text] = {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}, a = {0, 0.2, 0.4, 0.6, 0.8, 1}. The experimental results in our proposed approach showed that the generalization loss approached optimal when a = 1 and k = 21, and structure loss approached optimal when a = 0.4 and k = 3. CONCLUSION: We showed the importance of the attributes and the structure of the released health data in privacy preservation. Our method achieved better results of privacy preservation in social network by optimizing generalization loss and structure loss. The proposed method to evaluate loss obtained a balance between the data availability and the risk of privacy leakage.


Assuntos
Health Insurance Portability and Accountability Act , Privacidade , Algoritmos , Análise por Conglomerados , Confidencialidade , Humanos , Rede Social , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...