Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 8(1): 212, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34593775

RESUMO

Many studies showed that few degrees above tomato optimum growth temperature threshold can lead to serious loss in production. Therefore, the development of innovative strategies to obtain tomato cultivars with improved yield under high temperature conditions is a main goal both for basic genetic studies and breeding activities. In this paper, a F4 segregating population was phenotypically evaluated for quantitative and qualitative traits under heat stress conditions. Moreover, a genotyping by sequencing (GBS) approach has been employed for building up genomic selection (GS) models both for yield and soluble solid content (SCC). Several parameters, including training population size, composition and marker quality were tested to predict genotype performance under heat stress conditions. A good prediction accuracy for the two analyzed traits (0.729 for yield production and 0.715 for SCC) was obtained. The predicted models improved the genetic gain of selection in the next breeding cycles, suggesting that GS approach is a promising strategy to accelerate breeding for heat tolerance in tomato. Finally, the annotation of SNPs located in gene body regions combined with QTL analysis allowed the identification of five candidates putatively involved in high temperatures response, and the building up of a GS model based on calibrated panel of SNP markers.

2.
Methods Mol Biol ; 2264: 119-135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33263907

RESUMO

The global climate is changing, resulting in significant economic losses worldwide. It is thus necessary to speed up the plant selection process, especially for complex traits such as biotic and abiotic stresses. Nowadays, genomic selection (GS) is paving new ways to boost plant breeding, facilitating the rapid selection of superior genotypes based on the genomic estimated breeding value (GEBV). GEBVs consider all markers positioned throughout the genome, including those with minor effects. Indeed, although the effect of each marker may be very small, a large number of genome-wide markers retrieved by high-throughput genotyping (HTG) systems (mainly genotyping-by-sequencing, GBS) have the potential to explain all the genetic variance for a particular trait under selection. Although several workflows for GBS and GS data have been described, it is still hard for researchers without a bioinformatics background to carry out these analyses. This chapter has outlined some of the recently available bioinformatics resources that enable researchers to establish GBS applications for GS analysis in laboratories. Moreover, we provide useful scripts that could be used for this purpose and a description of key factors that need to be considered in these approaches.


Assuntos
Cromossomos de Plantas/genética , Biologia Computacional/métodos , Genoma de Planta , Técnicas de Genotipagem/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Melhoramento Vegetal/métodos , Plantas/genética , DNA de Plantas/análise , DNA de Plantas/genética , Variação Genética , Fenótipo , Seleção Genética
3.
Plants (Basel) ; 9(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962095

RESUMO

Genomic selection (GS) is a predictive approach that was built up to increase the rate of genetic gain per unit of time and reduce the generation interval by utilizing genome-wide markers in breeding programs. It has emerged as a valuable method for improving complex traits that are controlled by many genes with small effects. GS enables the prediction of the breeding value of candidate genotypes for selection. In this work, we address important issues related to GS and its implementation in the plant context with special emphasis on tomato breeding. Genomic constraints and critical parameters affecting the accuracy of prediction such as the number of markers, statistical model, phenotyping and complexity of trait, training population size and composition should be carefully evaluated. The comparison of GS approaches for facilitating the selection of tomato superior genotypes during breeding programs is also discussed. GS applied to tomato breeding has already been shown to be feasible. We illustrated how GS can improve the rate of gain in elite line selection, and descendent and backcross schemes. The GS schemes have begun to be delineated and computer science can provide support for future selection strategies. A new promising breeding framework is beginning to emerge for optimizing tomato improvement procedures.

4.
Plants (Basel) ; 9(5)2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349234

RESUMO

Cultivated cardoon is a multipurpose crop with adaptability to limiting environments. Two genotypes ("Bianco Avorio" and "Spagnolo") were comparatively characterized in response to short and prolonged 100 mM NaCl stress in hydroponics. Salt induced no growth variations between genotypes or symptoms of NaCl toxicity, but boosted ABA accumulation in roots and leaves. Both genotypes had high constitutive phenol content, whose major components were depleted upon 2 days of stress only in "Bianco Avorio". Prolonged stress stimulated accumulation of proline, phenylpropanoids, and related transcripts, and non-enzymatic antioxidant activity. Decreased antioxidant enzymes activities upon short stress did not occur for APX in "Spagnolo", indicating a stronger impairment of enzymatic defenses in "Bianco Avorio". Nonetheless, H2O2 and lipid peroxidation did not increase under short and prolonged stress in both genotypes. Overall, the two genotypes appear to share similar defense mechanisms but, in the short term, "Bianco Avorio" depends mainly on non-enzymatic antioxidant phenylpropanoids for ROS scavenging, while "Spagnolo" maintains a larger arsenal of defenses. Upon prolonged stress, proline could have contributed to protection of metabolic functions in both genotypes. Our results provide cues that can be exploited for cardoon genetic improvement and highlight genotypic differences for breeding salinity tolerant varieties.

5.
Planta ; 251(1): 34, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848729

RESUMO

MAIN CONCLUSION: Arundo donax ecotypes react differently to salinity, partly due to differences in constitutive defences and methylome plasticity. Arundo donax L. is a C3 fast-growing grass that yields high biomass under stress. To elucidate its ability to produce biomass under high salinity, we investigated short/long-term NaCl responses of three ecotypes through transcriptional, metabolic and DNA methylation profiling of leaves and roots. Prolonged salt treatment discriminated the sensitive ecotype 'Cercola' from the tolerant 'Domitiana' and 'Canneto' in terms of biomass. Transcriptional and metabolic responses to NaCl differed between the ecotypes. In roots, constitutive expression of ion transporter and stress-related transcription factors' genes was higher in 'Canneto' and 'Domitiana' than 'Cercola' and 21-day NaCl drove strong up-regulation in all ecotypes. In leaves, unstressed 'Domitiana' confirmed higher expression of the above genes, whose transcription was repressed in 'Domitiana' but induced in 'Cercola' following NaCl treatment. In all ecotypes, salinity increased proline, ABA and leaf antioxidants, paralleled by up-regulation of antioxidant genes in 'Canneto' and 'Cercola' but not in 'Domitiana', which tolerated a higher level of oxidative damage. Changes in DNA methylation patterns highlighted a marked capacity of the tolerant 'Domitiana' ecotype to adjust DNA methylation to salt stress. The reduced salt sensitivity of 'Domitiana' and, to a lesser extent, 'Canneto' appears to rely on a complex set of constitutively activated defences, possibly due to the environmental conditions of the site of origin, and on higher plasticity of the methylome. Our findings provide insights into the mechanisms of adaptability of A. donax ecotypes to salinity, offering new perspectives for the improvement of this species for cultivation in limiting environments.


Assuntos
Metilação de DNA , Ecótipo , Poaceae/metabolismo , Tolerância ao Sal/fisiologia , Cloreto de Sódio/metabolismo , Antioxidantes , Biomassa , Genes de Plantas/genética , Peroxidação de Lipídeos , Pressão Osmótica , Estresse Oxidativo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Poaceae/genética , Salinidade , Estresse Salino , Transcriptoma
6.
Plant Physiol Biochem ; 143: 50-60, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31479882

RESUMO

The huge amounts of biomass residues, remaining in the field after tomato fruits harvesting, can be utilized to produce bioenergy. A multiple level approach aimed to characterize two Solanum pennellii introgression lines (ILs), with contrasting phenotypes for plant architecture and biomass was carried out. The study of gene expression dynamics, microscopy cell traits and qualitative and quantitative cell wall chemical compounds variation enabled the discovery of key genes and cell processes involved biomass accumulation and composition. Enhanced biomass production observed in IL2-6 line is due to a more effective coordination of chloroplasts and mitochondria energy fluxes. Microscopy analysis revealed a higher number of cells and chloroplasts in leaf epidermis in the high biomass line whilst chemical measurements on the two lines pointed out striking differences in the cell wall composition and organization. Taken together, our findings shed light on the mechanisms underlying the tomato biomass production and processability.


Assuntos
Parede Celular/metabolismo , Lycopersicon esculentum/metabolismo , Biomassa , Parede Celular/fisiologia , Lycopersicon esculentum/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Locos de Características Quantitativas/genética
7.
Sci Rep ; 8(1): 11009, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-30030474

RESUMO

Plant abietane diterpenoids (e.g. aethiopinone, 1- oxoaethiopinone, salvipisone and ferruginol), synthesized in the roots of several Salvia spp, have antibacterial, antifungal, sedative and anti-proliferative properties. Recently we have reported that content of these compounds in S. sclarea hairy roots is strongly depending on transcriptional regulation of genes belonging to the plastidial MEP-dependent terpenoid pathway, from which they mostly derive. To boost the synthesis of this interesting class of compounds, heterologous AtWRKY18, AtWRKY40, and AtMYC2 TFs were overexpressed in S. sclarea hairy roots and proved to regulate in a coordinated manner the expression of several genes encoding enzymes of the MEP-dependent pathway, especially DXS, DXR, GGPPS and CPPS. The content of total abietane diterpenes was enhanced in all overexpressing lines, although in a variable manner due to a negative pleiotropic effect on HR growth. Interestingly, in the best performing HR lines overexpressing the AtWRKY40 TF induced a significant 4-fold increase in the final yield of aethiopinone, for which we have reported an interesting anti-proliferative activity against resistant melanoma cells. The present results are also informative and instrumental to enhance the synthesis of abietane diterpenes derived from the plastidial MEP-derived terpenoid pathway in other Salvia species.


Assuntos
Abietanos/biossíntese , Proteínas de Arabidopsis/genética , Eritritol/análogos & derivados , Regulação da Expressão Gênica de Plantas , Salvia/metabolismo , Fosfatos Açúcares/genética , Fatores de Transcrição/metabolismo , Abietanos/farmacologia , Proteínas de Arabidopsis/metabolismo , Linhagem Celular Tumoral , Eritritol/genética , Técnicas de Transferência de Genes , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Metabolismo Secundário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...