Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
Chem Sci ; 10(28): 6834-6843, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31391906


Current methods for metal chelation are generally based on multidentate organic ligands, which are generated through cumbersome multistep synthetic processes that lack flexibility for systematically varying metal-binding motifs. Octadentate ligands incorporating hydroxypyridinone or catecholamide binding moieties onto a spermine scaffold are known to display some of the highest affinities towards f-elements. Enhancing binding affinity for specific lanthanide or actinide ions however, necessitates ligand architectures that allow for modular and high throughput synthesis. Here we introduce a high-throughput combinatorial library of 16 tetrameric N-substituted glycine oligomers (peptoids) containing hydroxypyridinone or catecholamide chelating units linked via an ethylenediamine bridge and, for comparison, we also synthesized the corresponding mixed ligands derived from the spermine scaffold: 3,4,3-LI(1,2-HOPO)2(CAM)2 and 3,4,3-LI(CAM)2(1,2-HOPO)2. Coordination-based luminescence studies were carried out with Eu3+ and Tb3+ to begin probing the properties of the new ligand architecture and revealed higher sensitization efficiency with the spermine scaffold as well as different spectroscopic features among the structural peptoid isomers. Solution thermodynamic properties of selected ligands revealed different coordination properties between the spermine and peptoid analogues with Eu3+ stability constants log ß 110 ranging from 28.88 ± 3.45 to 43.97 ± 0.49. The general synthetic strategy presented here paves the way for precision design of new specific and versatile ligands, with a variety of applications tailored towards the use of f-elements, including separations, optical device optimization, and pharmaceutical development.

Angew Chem Int Ed Engl ; 58(12): 3928-3933, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30681761


An iterative polyphosphorylation approach is described, which is based on a phosphoramidite (P-amidite) derived reagent (c-PyPA) obtained from the cyclization of pyrophosphate with a reactive diisopropylaminodichlorophosphine. This type of reagent is unprecedented as it represents a reactive P-amidite without protecting groups. The reagent proved to be stable in solution over several weeks. Its utility is described in the context of iterative monodirectional and bidirectional polyphosphorylations. The ensuing functionalized cyclotriphosphate can be opened with a variety of nucleophiles providing ready access to diverse functionalized polyphosphate chains of defined length with several tags, including both P-N and P-O labels. Their interaction with exo- and endopolyphosphatases is described.

Inorg Chem ; 56(21): 12930-12937, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29019408


Recent efforts to activate the strong uranium-oxygen bonds in the dioxo uranyl cation have been limited to single oxo-group activation through either uranyl reduction and functionalization in solution, or by collision induced dissociation (CID) in the gas-phase, using mass spectrometry (MS). Here, we report and investigate the surprising double activation of uranyl by an organic ligand, 3,4,3-LI(CAM), leading to the formation of a formal U6+ chelate in the gas-phase. The cleavage of both uranyl oxo bonds was experimentally evidenced by CID, using deuterium and 18O isotopic substitutions, and by infrared multiple photon dissociation (IRMPD) spectroscopy. Density functional theory (DFT) computations predict that the overall reaction requires only 132 kJ/mol, with the first oxygen activation entailing about 107 kJ/mol. Combined with analysis of similar, but unreactive ligands, these results shed light on the chelation-driven mechanism of uranyl oxo bond cleavage, demonstrating its dependence on the presence of ligand hydroxyl protons available for direct interactions with the uranyl oxygens.

Top Curr Chem (Cham) ; 375(3): 51, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28444630


The complexity of phosphorylation pathways and their downstream effects is vast. Synthetic chemistry has been working side by side with biology to develop phosphate labels for biological processes involving phosphorylated compounds. This chapter discusses recently employed methods for the preparation of several phosphate labels. Synthesis of biomolecules and their analogs and other useful or potentially useful phosphate derivatives is discussed.

Fosfatos/química , Estrutura Molecular , Fosforilação
Inorg Chem ; 55(22): 11930-11936, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27802058


Targeted α therapy holds tremendous potential as a cancer treatment: it offers the possibility of delivering a highly cytotoxic dose to targeted cells while minimizing damage to surrounding healthy tissue. The metallic α-generating radioisotopes 225Ac and 227Th are promising radionuclides for therapeutic use, provided adequate chelation and targeting. Here we demonstrate a new chelating platform composed of a multidentate high-affinity oxygen-donating ligand 3,4,3-LI(CAM) bound to the mammalian protein siderocalin. Respective stability constants log ß110 = 29.65 ± 0.65, 57.26 ± 0.20, and 47.71 ± 0.08, determined for the EuIII (a lanthanide surrogate for AcIII), ZrIV, and ThIV complexes of 3,4,3-LI(CAM) through spectrophotometric titrations, reveal this ligand to be one of the most powerful chelators for both trivalent and tetravalent metal ions at physiological pH. The resulting metal-ligand complexes are also recognized with extremely high affinity by the siderophore-binding protein siderocalin, with dissociation constants below 40 nM and tight electrostatic interactions, as evidenced by X-ray structures of the protein:ligand:metal adducts with ZrIV and ThIV. Finally, differences in biodistribution profiles between free and siderocalin-bound 238PuIV-3,4,3-LI(CAM) complexes confirm in vivo stability of the protein construct. The siderocalin:3,4,3-LI(CAM) assembly can therefore serve as a "lock" to consolidate binding to the therapeutic 225Ac and 227Th isotopes or to the positron emission tomography emitter 89Zr, independent of metal valence state.

Quelantes/química , Complexos de Coordenação/química , Proteínas/química , Radioterapia/métodos , Tório/química , Zircônio/química , Animais , Complexos de Coordenação/farmacocinética , Feminino , Ligantes , Camundongos , Modelos Químicos , Distribuição Tecidual