Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Sci Rep ; 13(1): 340, 2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36611056


Amid its massive increase in energy demand, Southeast Asia has pledged to increase its use of renewable energy by up to 23% by 2025. Geospatial technology approaches that integrate statistical data, spatial models, earth observation satellite data, and climate modeling can be used to conduct strategic analyses for understanding the potential and efficiency of renewable energy development. This study aims to create the first spatial model of its kind in Southeast Asia to develop multi-renewable energy from solar, wind, and hydropower, further broken down into residential and agricultural areas. The novelty of this study is the development of a new priority model for renewable energy development resulting from the integration of area suitability analysis and the estimation of the amount of potential energy. Areas with high potential power estimations for the combination of the three types of energy are mostly located in northern Southeast Asia. Areas close to the equator, have a lower potential than the northern countries, except for southern regions. Solar photovoltaic (PV) plant construction is the most area-intensive type of energy generation among the considered energy sources, requiring 143,901,600 ha (61.71%), followed by wind (39,618,300 ha; 16.98%); a combination of solar PV and wind (37,302,500 ha; 16%); hydro (7,665,200 ha; 3.28%); a combination of hydro and solar PV (3,792,500 ha; 1.62%); and a combination of hydro and wind (582,700 ha; 0.25%). This study is timely and important because it will inform policies and regional strategies for transitioning to renewable energy, with consideration of the different characteristics present in Southeast Asia.

Energia Solar , Vento , Energia Renovável , Fontes Geradoras de Energia , Clima , Tecnologia
BMC Med Res Methodol ; 22(1): 77, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35313816


BACKGROUND: In heart data mining and machine learning, dimension reduction is needed to remove multicollinearity. Meanwhile, it has been proven to improve the interpretation of the parameter model. In addition, dimension reduction can also increase the time of computing in high dimensional data. METHODS: In this paper, we perform high dimensional ordination towards event counts in intensive care hospital for Emergency Department (ED 1), First Intensive Care Unit (ICU1), Second Intensive Care Unit (ICU2), Respiratory Care Intensive Care Unit (RICU), Surgical Intensive Care Unit (SICU), Subacute Respiratory Care Unit (RCC), Trauma and Neurosurgery Intensive Care Unit (TNCU), Neonatal Intensive Care Unit (NICU) which use the Generalized Linear Latent Variable Models (GLLVM's). RESULTS: During the analysis, we measure the performance and calculate the time computing of GLLVM by employing variational approximation and Laplace approximation, and compare the different distributions, including Negative Binomial, Poisson, Gaussian, ZIP, and Tweedie, respectively. GLLVMs (Generalized Linear Latent Variable Models), an extended version of GLMs (Generalized Linear Models) with latent variables, have fast computing time. The major challenge in latent variable modelling is that the function [Formula: see text] is not trivial to solve since the marginal likelihood involves integration over the latent variable u. CONCLUSIONS: In a nutshell, GLLVMs lead as the best performance reaching the variance of 98% comparing other methods. We get the best model negative binomial and Variational approximation, which provides the best accuracy by accuracy value of AIC, AICc, and BIC. In a nutshell, our best model is GLLVM-VA Negative Binomial with AIC 7144.07 and GLLVM-LA Negative Binomial with AIC 6955.922.

Big Data , Cuidados Críticos , Humanos , Recém-Nascido , Unidades de Terapia Intensiva , Modelos Lineares , Distribuição Normal
Stoch Environ Res Risk Assess ; 36(2): 429-449, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35125958


As an area experiencing air pollution, especially ozone concentrations that often exceed the threshold or are unhealthy, JABODETABEK (Jakarta, Bogor, Depok, Tangerang, and Bekasi) seeks to prevent and control pollution as well as restore air quality. Therefore, this study aims to build a predictive model of ozone concentration using Harris hawks optimization-support vector regression (HHO-SVR) in 14 sub-districts in JABODETABEK. This goal is achieved by collecting data on ozone concentration as a response variable and meteorological factors as predictor variables from the website that provides the data. Other predictor variables such as time and significant lag detected with partial autocorrelation function of ozone concentration were also used. Then the variables will be selected using the recursive feature elimination-support vector regression (RFE-SVR) to obtain a significant predictor variable that affects the ozone concentration. After that, the prediction model will be built using the HHO-SVR method, support vector regression (SVR) whose parameter values are optimized with the Harris hawks optimization (HHO) algorithm. When the model has been formed, several evaluation metrics used to determine the best model include mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), Coefficient of Determination (R2), Variance Ratio (VR), and Diebold-Mariano test. The results of this study indicate that lag 1, lag 2, air temperature, humidity, and UV index are significant predictor variables of the RFE-SVR results for most sub-districts. In general, the HHO process takes longer than other metaheuristic algorithms. On average, 7 of the 14 sub-districts using the HHO-SVR model yielded the best predictions with MAE below 10, RMSE and MAPE below 20, R2 around 0.97, and VR around 0.98. Then, the results of the Diebold-Mariano test also show that the accuracy of the prediction results and the stability of the performance of the HHO-SVR model is better, especially for the Ciputat and South Bekasi sub-districts. This shows that the two sub-districts are very suitable to use HHO-SVR in predicting ozone concentrations.