Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Tipo de estudo
Intervalo de ano de publicação
Nutrients ; 13(11)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34836091


Cancer is one of the leading causes of death globally, associated with multifactorial pathophysiological components. In particular, genetic mutations, infection or inflammation, unhealthy eating habits, exposition to radiation, work stress, and/or intake of toxins have been found to contribute to the development and progression of cancer disease states. Early detection of cancer and proper treatment have been found to enhance the chances of survival and healing, but the side effects of anticancer drugs still produce detrimental responses that counteract the benefits of treatment in terms of hospitalization and survival. Recently, several natural bioactive compounds were found to possess anticancer properties, capable of killing transformed or cancerous cells without being toxic to their normal counterparts. This effect occurs when natural products are associated with conventional treatments, thereby suggesting that nutraceutical supplementation may contribute to successful anticancer therapy. This review aims to discuss the current literature on four natural bioactive extracts mostly characterized by a specific polyphenolic profile. In particular, several activities have been reported to contribute to nutraceutical support in anticancer treatment: (1) inhibition of cell proliferation, (2) antioxidant activity, and (3) anti-inflammatory activity. On the other hand, owing to their attenuation of the toxic effect of current anticancer therapies, natural antioxidants may contribute to improving the compliance of patients undergoing anticancer treatment. Thus, nutraceutical supplementation, along with current anticancer drug treatment, may be considered for better responses and compliance in patients with cancer. It should be noted, however, that when data from studies with bioactive plant preparations are discussed, it is appropriate to ensure that experiments have been conducted in accordance with accepted pharmacological research practices so as not to disclose information that is only partially correct.

Nutrients ; 13(11)2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34836326


Doxorubicin (Doxo) is a widely used antineoplastic drug which often induces cardiomyopathy, leading to congestive heart failure through the intramyocardial production of reactive oxygen species (ROS). Icariin (Ica) is a flavonoid isolated from Epimedii Herba (Berberidaceae). Some reports on the pharmacological activity of Ica explained its antioxidant and cardioprotective effects. The aim of our study was to assess the protective activities of Ica against Doxo-detrimental effects on rat heart-tissue derived embryonic cardiac myoblasts (H9c2 cells) and to identify, at least in part, the molecular mechanisms involved. Our results showed that pretreatment of H9c2 cells with 1 µM and 5 µM of Ica, prior to Doxo exposure, resulted in an improvement in cell viability, a reduction in ROS generation, the prevention of mitochondrial dysfunction and mPTP opening. Furthermore, for the first time, we identified one feasible molecular mechanism through which Ica could exerts its cardioprotective effects. Indeed, our data showed a significant reduction in Caveolin-1(Cav-1) expression levels and a specific inhibitory effect on phosphodiesterase 5 (PDE5a) activity, improving mitochondrial function compared to Doxo-treated cells. Besides, Ica significantly prevented apoptotic cell death and downregulated the main pro-autophagic marker Beclin-1 and LC3 lipidation rate, restoring physiological levels of activation of the protective autophagic process. These results suggest that Ica might have beneficial cardioprotective effects in attenuating cardiotoxicity in patients requiring anthracycline chemotherapy through the inhibition of oxidative stress and, in particular, through the modulation of Cav-1 expression levels and the involvement of PDE5a activity, thereby leading to cardiac cell survival.

Nutrients ; 13(9)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34578843


Heart failure (HF) characterized by cardiac remodeling is a condition in which inflammation and fibrosis play a key role. Dietary supplementation with n-3 polyunsaturated fatty acids (PUFAs) seems to produce good results. In fact, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have anti-inflammatory and antioxidant properties and different cardioprotective mechanisms. In particular, following their interaction with the nuclear factor erythropoietin 2 related factor 2 (NRF2), the free fatty acid receptor 4 (Ffar4) receptor, or the G-protein coupled receptor 120 (GPR120) fibroblast receptors, they inhibit cardiac fibrosis and protect the heart from HF onset. Furthermore, n-3 PUFAs increase the left ventricular ejection fraction (LVEF), reduce global longitudinal deformation, E/e ratio (early ventricular filling and early mitral annulus velocity), soluble interleukin-1 receptor-like 1 (sST2) and high-sensitive C Reactive protein (hsCRP) levels, and increase flow-mediated dilation. Moreover, lower levels of brain natriuretic peptide (BNP) and serum norepinephrine (sNE) are reported and have a positive effect on cardiac hemodynamics. In addition, they reduce cardiac remodeling and inflammation by protecting patients from HF onset after myocardial infarction (MI). The positive effects of PUFA supplementation are associated with treatment duration and a daily dosage of 1-2 g. Therefore, both the European Society of Cardiology (ESC) and the American College of Cardiology/American Heart Association (ACC/AHA) define dietary supplementation with n-3 PUFAs as an effective therapy for reducing the risk of hospitalization and death in HF patients. In this review, we seek to highlight the most recent studies related to the effect of PUFA supplementation in HF. For that purpose, a PubMed literature survey was conducted with a focus on various in vitro and in vivo studies and clinical trials from 2015 to 2021.

Suplementos Nutricionais , Ácidos Graxos Ômega-3/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/patologia , Remodelação Ventricular/fisiologia , Fibrose , Coração/efeitos dos fármacos , Coração/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Inflamação/tratamento farmacológico , Miocárdio/patologia , Volume Sistólico/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos
Nutrients ; 13(7)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34371986


Cardiovascular disease is the leading cause of death and disability in the Western world. In order to safeguard the structure and the functionality of the myocardium, it is extremely important to adequately support the cardiomyocytes. Two cellular organelles of cardiomyocytes are essential for cell survival and to ensure proper functioning of the myocardium: mitochondria and the sarcoplasmic reticulum. Mitochondria are responsible for the energy metabolism of the myocardium, and regulate the processes that can lead to cell death. The sarcoplasmic reticulum preserves the physiological concentration of the calcium ion, and triggers processes to protect the structural and functional integrity of the proteins. The alterations of these organelles can damage myocardial functioning. A proper nutritional balance regarding the intake of macronutrients and micronutrients leads to a significant improvement in the symptoms and consequences of heart disease. In particular, the Mediterranean diet, characterized by a high consumption of plant-based foods, small quantities of red meat, and high quantities of olive oil, reduces and improves the pathological condition of patients with heart failure. In addition, nutritional support and nutraceutical supplementation in patients who develop heart failure can contribute to the protection of the failing myocardium. Since polyphenols have numerous beneficial properties, including anti-inflammatory and antioxidant properties, this review gathers what is known about the beneficial effects of polyphenol-rich bergamot fruit on the cardiovascular system. In particular, the role of bergamot polyphenols in mitochondrial and sarcoplasmic dysfunctions in diabetic cardiomyopathy is reported.

Cardiomiopatias Diabéticas/fisiopatologia , Mitocôndrias/efeitos dos fármacos , Óleos Vegetais/farmacologia , Polifenóis/farmacologia , Retículo Sarcoplasmático/efeitos dos fármacos , Animais , Suplementos Nutricionais , Humanos , Miocárdio/metabolismo , Azeite de Oliva/farmacologia
Int J Mol Sci ; 22(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33805912


The high incidence of obesity is associated with an increasing risk of several chronic diseases such as cardiovascular disease, type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). Sustained obesity is characterized by a chronic and unsolved inflammation of adipose tissue, which leads to a greater expression of proinflammatory adipokines, excessive lipid storage and adipogenesis. The purpose of this review is to clarify how inflammatory mediators act during adipose tissue dysfunction in the development of insulin resistance and all obesity-associated diseases. In particular, we focused our attention on the role of inflammatory signaling in brown adipose tissue (BAT) thermogenic activity and the browning of white adipose tissue (WAT), which represent a relevant component of adipose alterations during obesity. Furthermore, we reported the most recent evidence in the literature on nutraceutical supplementation in the management of the adipose inflammatory state, and in particular on their potential effect on common inflammatory mediators and pathways, responsible for WAT and BAT dysfunction. Although further research is needed to demonstrate that targeting pro-inflammatory mediators improves adipose tissue dysfunction and activates thermogenesis in BAT and WAT browning during obesity, polyphenols supplementation could represent an innovative therapeutic strategy to prevent progression of obesity and obesity-related metabolic diseases.

Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Suplementos Nutricionais , Inflamação/metabolismo , Obesidade/metabolismo , Termogênese , Adipogenia , Tecido Adiposo/metabolismo , Animais , Curcumina/química , Dieta , Retículo Endoplasmático/metabolismo , Ácidos Graxos Insaturados/metabolismo , Humanos , Resistência à Insulina , Intestinos/química , Lipídeos/química , Macrófagos/metabolismo , Polifenóis/química , Resveratrol/farmacologia , Transdução de Sinais