Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 68(12): 2315-2326, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31506343

RESUMO

Epigenetic changes may contribute substantially to risks of diseases of aging. Previous studies reported seven methylation variable positions (MVPs) robustly associated with incident type 2 diabetes mellitus (T2DM). However, their causal roles in T2DM are unclear. In an incident T2DM case-cohort study nested within the population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk cohort, we used whole blood DNA collected at baseline, up to 11 years before T2DM onset, to investigate the role of methylation in the etiology of T2DM. We identified 15 novel MVPs with robust associations with incident T2DM and robustly confirmed three MVPs identified previously (near to TXNIP, ABCG1, and SREBF1). All 18 MVPs showed directionally consistent associations with incident and prevalent T2DM in independent studies. Further conditional analyses suggested that the identified epigenetic signals appear related to T2DM via glucose and obesity-related pathways acting before the collection of baseline samples. We integrated genome-wide genetic data to identify methylation-associated quantitative trait loci robustly associated with 16 of the 18 MVPs and found one MVP, cg00574958 at CPT1A, with a possible direct causal role in T2DM. None of the implicated genes were previously highlighted by genetic association studies, suggesting that DNA methylation studies may reveal novel biological mechanisms involved in tissue responses to glycemia.

2.
Clin Epigenetics ; 10: 38, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29588806

RESUMO

Background: Methylation measures quantified by microarray techniques can be affected by systematic variation due to the technical processing of samples, which may compromise the accuracy of the measurement process and contribute to bias the estimate of the association under investigation. The quantification of the contribution of the systematic source of variation is challenging in datasets characterized by hundreds of thousands of features.In this study, we introduce a method previously developed for the analysis of metabolomics data to evaluate the performance of existing normalizing techniques to correct for unwanted variation. Illumina Infinium HumanMethylation450K was used to acquire methylation levels in over 421,000 CpG sites for 902 study participants of a case-control study on breast cancer nested within the EPIC cohort. The principal component partial R-square (PC-PR2) analysis was used to identify and quantify the variability attributable to potential systematic sources of variation. Three correcting techniques, namely ComBat, surrogate variables analysis (SVA) and a linear regression model to compute residuals were applied. The impact of each correcting method on the association between smoking status and DNA methylation levels was evaluated, and results were compared with findings from a large meta-analysis. Results: A sizeable proportion of systematic variability due to variables expressing 'batch' and 'sample position' within 'chip' was identified, with values of the partial R2 statistics equal to 9.5 and 11.4% of total variation, respectively. After application of ComBat or the residuals' methods, the contribution was 1.3 and 0.2%, respectively. The SVA technique resulted in a reduced variability due to 'batch' (1.3%) and 'sample position' (0.6%), and in a diminished variability attributable to 'chip' within a batch (0.9%). After ComBat or the residuals' corrections, a larger number of significant sites (k = 600 and k = 427, respectively) were associated to smoking status than the SVA correction (k = 96). Conclusions: The three correction methods removed systematic variation in DNA methylation data, as assessed by the PC-PR2, which lent itself as a useful tool to explore variability in large dimension data. SVA produced more conservative findings than ComBat in the association between smoking and DNA methylation.

3.
Nat Commun ; 9(1): 387, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29374233

RESUMO

DNA methylation age is an accurate biomarker of chronological age and predicts lifespan, but its underlying molecular mechanisms are unknown. In this genome-wide association study of 9907 individuals, we find gene variants mapping to five loci associated with intrinsic epigenetic age acceleration (IEAA) and gene variants in three loci associated with extrinsic epigenetic age acceleration (EEAA). Mendelian randomization analysis suggests causal influences of menarche and menopause on IEAA and lipoproteins on IEAA and EEAA. Variants associated with longer leukocyte telomere length (LTL) in the telomerase reverse transcriptase gene (TERT) paradoxically confer higher IEAA (P < 2.7 × 10-11). Causal modeling indicates TERT-specific and independent effects on LTL and IEAA. Experimental hTERT-expression in primary human fibroblasts engenders a linear increase in DNA methylation age with cell population doubling number. Together, these findings indicate a critical role for hTERT in regulating the epigenetic clock, in addition to its established role of compensating for cell replication-dependent telomere shortening.

4.
Sci Rep ; 7(1): 13042, 2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29026132

RESUMO

The aim of this study is to identify genetic variants that harbour signatures of recent positive selection and may facilitate physiological adaptations to hypobaric hypoxia. To achieve this, we conducted whole genome sequencing and lung function tests in 19 Argentinean highlanders (>3500 m) comparing them to 16 Native American lowlanders. We developed a new statistical procedure using a combination of population branch statistics (PBS) and number of segregating sites by length (nSL) to detect beneficial alleles that arose since the settlement of the Andes and are currently present in 15-50% of the population. We identified two missense variants as significant targets of selection. One of these variants, located within the GPR126 gene, has been previously associated with the forced expiratory volume/forced vital capacity ratio. The other novel missense variant mapped to the EPAS1 gene encoding the hypoxia inducible factor 2α. EPAS1 is known to be the major selection candidate gene in Tibetans. The derived allele of GPR126 is associated with lung function in our sample of highlanders (p < 0.05). These variants may contribute to the physiological adaptations to hypobaric hypoxia, possibly by altering lung function. The new statistical approach might be a useful tool to detect selected variants in population studies.

5.
Nat Genet ; 49(5): 674-679, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28346444

RESUMO

The Y chromosome is frequently lost in hematopoietic cells, which represents the most common somatic alteration in men. However, the mechanisms that regulate mosaic loss of chromosome Y (mLOY), and its clinical relevance, are unknown. We used genotype-array-intensity data and sequence reads from 85,542 men to identify 19 genomic regions (P < 5 × 10-8) that are associated with mLOY. Cumulatively, these loci also predicted X chromosome loss in women (n = 96,123; P = 4 × 10-6). Additional epigenome-wide methylation analyses using whole blood highlighted 36 differentially methylated sites associated with mLOY. The genes identified converge on aspects of cell proliferation and cell cycle regulation, including DNA synthesis (NPAT), DNA damage response (ATM), mitosis (PMF1, CENPN and MAD1L1) and apoptosis (TP53). We highlight the shared genetic architecture between mLOY and cancer susceptibility, in addition to inferring a causal effect of smoking on mLOY. Collectively, our results demonstrate that genotype-array-intensity data enables a measure of cell cycle efficiency at population scale and identifies genes implicated in aneuploidy, genome instability and cancer susceptibility.


Assuntos
Ciclo Celular/genética , Cromossomos Humanos Y/genética , Predisposição Genética para Doença/genética , Variação Genética , Neoplasias/genética , Deleção Cromossômica , Cromossomos Humanos X/genética , Metilação de DNA , Feminino , Genoma Humano/genética , Estudo de Associação Genômica Ampla/métodos , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Instabilidade Genômica , Genótipo , Humanos , Mutação INDEL , Masculino , Neoplasias/patologia , Polimorfismo de Nucleotídeo Único
6.
Nature ; 538(7624): 238-242, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27654910

RESUMO

High-coverage whole-genome sequence studies have so far focused on a limited number of geographically restricted populations, or been targeted at specific diseases, such as cancer. Nevertheless, the availability of high-resolution genomic data has led to the development of new methodologies for inferring population history and refuelled the debate on the mutation rate in humans. Here we present the Estonian Biocentre Human Genome Diversity Panel (EGDP), a dataset of 483 high-coverage human genomes from 148 populations worldwide, including 379 new genomes from 125 populations, which we group into diversity and selection sets. We analyse this dataset to refine estimates of continent-wide patterns of heterozygosity, long- and short-distance gene flow, archaic admixture, and changes in effective population size through time as well as for signals of positive or balancing selection. We find a genetic signature in present-day Papuans that suggests that at least 2% of their genome originates from an early and largely extinct expansion of anatomically modern humans (AMHs) out of Africa. Together with evidence from the western Asian fossil record, and admixture between AMHs and Neanderthals predating the main Eurasian expansion, our results contribute to the mounting evidence for the presence of AMHs out of Africa earlier than 75,000 years ago.


Assuntos
Grupos de Populações Continentais/genética , Genoma Humano/genética , Genômica , Migração Humana/história , África/etnologia , Animais , Ásia , Conjuntos de Dados como Assunto , Estônia , Europa (Continente) , Fósseis , Fluxo Gênico , Genética Populacional , Heterozigoto , História Antiga , Humanos , Homem de Neandertal/genética , Nova Guiné , Grupo com Ancestrais Oceânicos/genética , Dinâmica Populacional
7.
Eur J Hum Genet ; 24(11): 1605-1611, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27302840

RESUMO

The history of human settlement in Southeast Asia has been complex and involved several distinct dispersal events. Here, we report the analyses of 1825 individuals from Southeast Asia including new genome-wide genotype data for 146 individuals from three Mainland Southeast Asian (Burmese, Malay and Vietnamese) and four Island Southeast Asian (Dusun, Filipino, Kankanaey and Murut) populations. While confirming the presence of previously recognised major ancestry components in the Southeast Asian population structure, we highlight the Kankanaey Igorots from the highlands of the Philippine Mountain Province as likely the closest living representatives of the source population that may have given rise to the Austronesian expansion. This conclusion rests on independent evidence from various analyses of autosomal data and uniparental markers. Given the extensive presence of trade goods, cultural and linguistic evidence of Indian influence in Southeast Asia starting from 2.5 kya, we also detect traces of a South Asian signature in different populations in the region dating to the last couple of thousand years.


Assuntos
Grupo com Ancestrais do Continente Asiático/genética , Ilhas , População/genética , Ásia Sudeste , Migração Humana , Humanos
8.
Mutat Res ; 780: 97-102, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26366667

RESUMO

Arsenic is a carcinogen associated with skin lesions and cardiovascular diseases. The Colla population from the Puna region in Northwest Argentinean is exposed to levels of arsenic in drinking water exceeding the recommended maximum by a factor of 20. Yet, they thrive in this challenging environment since thousands of years and therefore we hypothesize strong selection signatures in genes involved in arsenic metabolism. We analyzed genome-wide genotype data for 730,000 loci in 25 Collas, considering 24 individuals of the neighbouring Calchaquíes and 24 Wichí from the Gran Chaco region in the Argentine province of Salta as control groups. We identified a strong signal of positive selection in the main arsenic methyltransferase AS3MT gene, which has been previously associated with lower concentrations of the most toxic product of arsenic metabolism monomethylarsonic acid. This study confirms recent studies reporting selection signals in the AS3MT gene albeit using different samples, tests and control populations.


Assuntos
Arsênico/toxicidade , Índios Sul-Americanos/genética , Metiltransferases/genética , Seleção Genética , Poluentes Químicos da Água/toxicidade , Adulto , Argentina , Arsenicais/metabolismo , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Metiltransferases/metabolismo
9.
Physiol Rep ; 3(5)2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25948820

RESUMO

Highland populations living permanently under hypobaric hypoxia have been subject of extensive research because of the relevance of their physiological adaptations for the understanding of human health and disease. In this context, what is considered high altitude is a matter of interpretation and while the adaptive processes at high altitude (above 3000 m) are well documented, the effects of moderate altitude (below 3000 m) on the phenotype are less well established. In this study, we compare physiological and anthropometric characteristics as well as genetic variations in two Andean populations: the Calchaquíes (2300 m) and neighboring Collas (3500 m). We compare their phenotype and genotype to the sea-level Wichí population. We measured physiological (heart rate, oxygen saturation, respiration rate, and lung function) as well as anthropometric traits (height, sitting height, weight, forearm, and tibia length). We conducted genome-wide genotyping on a subset of the sample (n = 74) and performed various scans for positive selection. At the phenotypic level (n = 179), increased lung capacity stood out in both Andean groups, whereas a growth reduction in distal limbs was only observed at high altitude. At the genome level, Calchaquíes revealed strong signals around PRKG1, suggesting that the nitric oxide pathway may be a target of selection. PRKG1 was highlighted by one of four selection tests among the top five genes using the population branch statistic. Selection tests results of Collas were reported previously. Overall, our study shows that some phenotypic and genetic differentiation occurs at intermediate altitude in response to moderate lifelong selection pressures.

10.
Genome Res ; 25(4): 459-66, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25770088

RESUMO

It is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50-100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192-307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47-52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cultural changes affecting variance of reproductive success among males.


Assuntos
Cromossomos Humanos Y/genética , Grupos de Populações Continentais/genética , Evolução Molecular , Sequência de Bases , DNA Mitocondrial/genética , Variação Genética/genética , Genética Populacional , Haplótipos/genética , Humanos , Masculino , Modelos Genéticos , Filogenia , Análise de Sequência de DNA
11.
Am J Hum Genet ; 95(5): 584-589, 2014 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-25449608

RESUMO

Arctic populations live in an environment characterized by extreme cold and the absence of plant foods for much of the year and are likely to have undergone genetic adaptations to these environmental conditions in the time they have been living there. Genome-wide selection scans based on genotype data from native Siberians have previously highlighted a 3 Mb chromosome 11 region containing 79 protein-coding genes as the strongest candidates for positive selection in Northeast Siberians. However, it was not possible to determine which of the genes might be driving the selection signal. Here, using whole-genome high-coverage sequence data, we identified the most likely causative variant as a nonsynonymous G>A transition (rs80356779; c.1436C>T [p.Pro479Leu] on the reverse strand) in CPT1A, a key regulator of mitochondrial long-chain fatty-acid oxidation. Remarkably, the derived allele is associated with hypoketotic hypoglycemia and high infant mortality yet occurs at high frequency in Canadian and Greenland Inuits and was also found at 68% frequency in our Northeast Siberian sample. We provide evidence of one of the strongest selective sweeps reported in humans; this sweep has driven this variant to high frequency in circum-Arctic populations within the last 6-23 ka despite associated deleterious consequences, possibly as a result of the selective advantage it originally provided to either a high-fat diet or a cold environment.

12.
PLoS One ; 9(5): e98076, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24847810

RESUMO

Following the dispersal out of Africa, where hominins evolved in warm environments for millions of years, our species has colonised different climate zones of the world, including high latitudes and cold environments. The extent to which human habitation in (sub-)Arctic regions has been enabled by cultural buffering, short-term acclimatization and genetic adaptations is not clearly understood. Present day indigenous populations of Siberia show a number of phenotypic features, such as increased basal metabolic rate, low serum lipid levels and increased blood pressure that have been attributed to adaptation to the extreme cold climate. In this study we introduce a dataset of 200 individuals from ten indigenous Siberian populations that were genotyped for 730,525 SNPs across the genome to identify genes and non-coding regions that have undergone unusually rapid allele frequency and long-range haplotype homozygosity change in the recent past. At least three distinct population clusters could be identified among the Siberians, each of which showed a number of unique signals of selection. A region on chromosome 11 (chr11:66-69 Mb) contained the largest amount of clustering of significant signals and also the strongest signals in all the different selection tests performed. We present a list of candidate cold adaption genes that showed significant signals of positive selection with our strongest signals associated with genes involved in energy regulation and metabolism (CPT1A, LRP5, THADA) and vascular smooth muscle contraction (PRKG1). By employing a new method that paints phased chromosome chunks by their ancestry we distinguish local Siberian-specific long-range haplotype signals from those introduced by admixture.


Assuntos
Aclimatação/genética , Clima Frio , Genômica , Grupos Populacionais/genética , Evolução Molecular , Humanos , Polimorfismo de Nucleotídeo Único , Grupos Populacionais/etnologia , Seleção Genética , Sibéria/etnologia
13.
PLoS One ; 9(3): e93314, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24686296

RESUMO

During their migrations out of Africa, humans successfully colonised and adapted to a wide range of habitats, including extreme high altitude environments, where reduced atmospheric oxygen (hypoxia) imposes a number of physiological challenges. This study evaluates genetic and phenotypic variation in the Colla population living in the Argentinean Andes above 3500 m and compares it to the nearby lowland Wichí group in an attempt to pinpoint evolutionary mechanisms underlying adaptation to high altitude hypoxia. We genotyped 730,525 SNPs in 25 individuals from each population. In genome-wide scans of extended haplotype homozygosity Collas showed the strongest signal around VEGFB, which plays an essential role in the ischemic heart, and ELTD1, another gene crucial for heart development and prevention of cardiac hypertrophy. Moreover, pathway enrichment analysis showed an overrepresentation of pathways associated with cardiac morphology. Taken together, these findings suggest that Colla highlanders may have evolved a toolkit of adaptative mechanisms resulting in cardiac reinforcement, most likely to counteract the adverse effects of the permanently increased haematocrit and associated shear forces that characterise the Andean response to hypoxia. Regulation of cerebral vascular flow also appears to be part of the adaptive response in Collas. These findings are not only relevant to understand the evolution of hypoxia protection in high altitude populations but may also suggest new avenues for medical research into conditions where hypoxia constitutes a detrimental factor.


Assuntos
Aclimatação/genética , Adaptação Fisiológica/genética , Altitude , Evolução Biológica , Ecossistema , Genética Populacional/métodos , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Hipóxia/genética , Oxigênio/metabolismo , Polimorfismo de Nucleotídeo Único/genética , América do Sul
14.
Mol Biol Evol ; 30(8): 1877-88, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23666210

RESUMO

The Tibetan and Andean Plateaus and Ethiopian highlands are the largest regions to have long-term high-altitude residents. Such populations are exposed to lower barometric pressures and hence atmospheric partial pressures of oxygen. Such "hypobaric hypoxia" may limit physical functional capacity, reproductive health, and even survival. As such, selection of genetic variants advantageous to hypoxic adaptation is likely to have occurred. Identifying signatures of such selection is likely to help understanding of hypoxic adaptive processes. Here, we seek evidence of such positive selection using five Ethiopian populations, three of which are from high-altitude areas in Ethiopia. As these populations may have been recipients of Eurasian gene flow, we correct for this admixture. Using single-nucleotide polymorphism genotype data from multiple populations, we find the strongest signal of selection in BHLHE41 (also known as DEC2 or SHARP1). Remarkably, a major role of this gene is regulation of the same hypoxia response pathway on which selection has most strikingly been observed in both Tibetan and Andean populations. Because it is also an important player in the circadian rhythm pathway, BHLHE41 might also provide insights into the mechanisms underlying the recognized impacts of hypoxia on the circadian clock. These results support the view that Ethiopian, Andean, and Tibetan populations living at high altitude have adapted to hypoxia differently, with convergent evolution affecting different genes from the same pathway.


Assuntos
Aclimatação/genética , Altitude , Estudo de Associação Genômica Ampla , Transcriptoma , Evolução Biológica , Etiópia , Redes Reguladoras de Genes , Genética Populacional , Humanos , Hipóxia/genética , Polimorfismo de Nucleotídeo Único , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA