Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 10: 1880, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31440254

RESUMO

Mixed Connective Tissue Disease (MCTD) is a rare complex systemic autoimmune disease (SAD) characterized by the presence of increased levels of anti-U1 ribonucleoprotein autoantibodies and signs and symptoms that resemble other SADs such as systemic sclerosis (SSc), rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE). Due to its low prevalence, this disease has been very poorly studied at the molecular level. We performed for the first time an epigenome-wide association study interrogating DNA methylation data obtained with the Infinium MethylationEPIC array from whole blood samples in 31 patients diagnosed with MCTD and 255 healthy subjects. We observed a pervasive hypomethylation involving 170 genes enriched for immune-related function such as those involved in type I interferon signaling pathways or in negative regulation of viral genome replication. We mostly identified epigenetic signals at genes previously implicated in other SADs, for example MX1, PARP9, DDX60, or IFI44L, for which we also observed that MCTD patients exhibit higher DNA methylation variability compared with controls, suggesting that these sites might be involved in plastic immune responses that are relevant to the disease. Through methylation quantitative trait locus (meQTL) analysis we identified widespread local genetic effects influencing DNA methylation variability at MCTD-associated sites. Interestingly, for IRF7, IFI44 genes, and the HLA region we have evidence that they could be exerting a genetic risk on MCTD mediated through DNA methylation changes. Comparison of MCTD-associated epigenome with patients diagnosed with SLE, or Sjögren's Syndrome, reveals a common interferon-related epigenetic signature, however we find substantial epigenetic differences when compared with patients diagnosed with rheumatoid arthritis and systemic sclerosis. Furthermore, we show that MCTD-associated CpGs are potential epigenetic biomarkers with high diagnostic value. Our study serves to reveal new genes and pathways involved in MCTD, to illustrate the important role of epigenetic modifications in MCTD pathology, in mediating the interaction between different genetic and environmental MCTD risk factors, and as potential biomarkers of SADs.

2.
Nat Commun ; 10(1): 2581, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31197173

RESUMO

Despite existing reports on differential DNA methylation in type 2 diabetes (T2D) and obesity, our understanding of its functional relevance remains limited. Here we show the effect of differential methylation in the early phases of T2D pathology by a blood-based epigenome-wide association study of 4808 non-diabetic Europeans in the discovery phase and 11,750 individuals in the replication. We identify CpGs in LETM1, RBM20, IRS2, MAN2A2 and the 1q25.3 region associated with fasting insulin, and in FCRL6, SLAMF1, APOBEC3H and the 15q26.1 region with fasting glucose. In silico cross-omics analyses highlight the role of differential methylation in the crosstalk between the adaptive immune system and glucose homeostasis. The differential methylation explains at least 16.9% of the association between obesity and insulin. Our study sheds light on the biological interactions between genetic variants driving differential methylation and gene expression in the early pathogenesis of T2D.


Assuntos
Metilação de DNA/fisiologia , Diabetes Mellitus Tipo 2/genética , Glucose/metabolismo , Insulina/metabolismo , Obesidade/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Simulação por Computador , Ilhas de CpG/genética , Diabetes Mellitus Tipo 2/metabolismo , Epigênese Genética/fisiologia , Epigenômica/métodos , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Estudo de Associação Genômica Ampla/métodos , Homeostase/genética , Humanos , Masculino , Redes e Vias Metabólicas/genética , Pessoa de Meia-Idade , Obesidade/metabolismo , Polimorfismo de Nucleotídeo Único/fisiologia , Adulto Jovem
3.
Clin Epigenetics ; 10(1): 126, 2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30342560

RESUMO

BACKGROUND: Tobacco smoking is a risk factor for multiple diseases, including cardiovascular disease and diabetes. Many smoking-associated signals have been detected in the blood methylome, but the extent to which these changes are widespread to metabolically relevant tissues, and impact gene expression or metabolic health, remains unclear. METHODS: We investigated smoking-associated DNA methylation and gene expression variation in adipose tissue biopsies from 542 healthy female twins. Replication, tissue specificity, and longitudinal stability of the smoking-associated effects were explored in additional adipose, blood, skin, and lung samples. We characterized the impact of adipose tissue smoking methylation and expression signals on metabolic disease risk phenotypes, including visceral fat. RESULTS: We identified 42 smoking-methylation and 42 smoking-expression signals, where five genes (AHRR, CYP1A1, CYP1B1, CYTL1, F2RL3) were both hypo-methylated and upregulated in current smokers. CYP1A1 gene expression achieved 95% prediction performance of current smoking status. We validated and replicated a proportion of the signals in additional primary tissue samples, identifying tissue-shared effects. Smoking leaves systemic imprints on DNA methylation after smoking cessation, with stronger but shorter-lived effects on gene expression. Metabolic disease risk traits such as visceral fat and android-to-gynoid ratio showed association with methylation at smoking markers with functional impacts on expression, such as CYP1A1, and at tissue-shared smoking signals, such as NOTCH1. At smoking-signals, BHLHE40 and AHRR DNA methylation and gene expression levels in current smokers were predictive of future gain in visceral fat upon smoking cessation. CONCLUSIONS: Our results provide the first comprehensive characterization of coordinated DNA methylation and gene expression markers of smoking in adipose tissue. The findings relate to human metabolic health and give insights into understanding the widespread health consequence of smoking outside of the lung.

4.
Nat Commun ; 9(1): 3738, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30218040

RESUMO

X-chromosome inactivation (XCI), i.e., the inactivation of one of the female X chromosomes, restores equal expression of X-chromosomal genes between females and males. However, ~10% of genes show variable degrees of escape from XCI between females, although little is known about the causes of variable XCI. Using a discovery data-set of 1867 females and 1398 males and a replication sample of 3351 females, we show that genetic variation at three autosomal loci is associated with female-specific changes in X-chromosome methylation. Through cis-eQTL expression analysis, we map these loci to the genes SMCHD1/METTL4, TRIM6/HBG2, and ZSCAN9. Low-expression alleles of the loci are predominantly associated with mild hypomethylation of CpG islands near genes known to variably escape XCI, implicating the autosomal genes in variable XCI. Together, these results suggest a genetic basis for variable escape from XCI and highlight the potential of a population genomics approach to identify genes involved in XCI.

5.
Genes (Basel) ; 9(5)2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29758014

RESUMO

Monozygotic (MZ) twins are typically indistinguishable via forensic DNA profiling. Recently, we demonstrated that epigenetic differentiation of MZ twins is feasible; however, proportions of twin differentially methylated CpG sites (tDMSs) identified in reference-type blood DNA were not replicated in trace-type blood DNA. Here we investigated buccal swabs as typical forensic reference material, and saliva and cigarette butts as commonly encountered forensic trace materials. As an analog to a forensic case, we analyzed one MZ twin pair. Epigenome-wide microarray analysis in reference-type buccal DNA revealed 25 candidate tDMSs with >0.5 twin-to-twin differences. MethyLight quantitative PCR (qPCR) of 22 selected tDMSs in trace-type DNA revealed in saliva DNA that six tDMSs (27.3%) had >0.1 twin-to-twin differences, seven (31.8%) had smaller (<0.1) but robustly detected differences, whereas for nine (40.9%) the differences were in the opposite direction relative to the microarray data; for cigarette butt DNA, results were 50%, 22.7%, and 27.3%, respectively. The discrepancies between reference-type and trace-type DNA outcomes can be explained by cell composition differences, method-to-method variation, and other technical reasons including bisulfite conversion inefficiency. Our study highlights the importance of the DNA source and that careful characterization of biological and technical effects is needed before epigenetic MZ twin differentiation is applicable in forensic casework.

6.
Clin Immunol ; 2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29605707

RESUMO

Epigenetics is known to be an important mechanism in the pathogenesis of autoimmune diseases. Epigenetic variations can act as integrators of environmental and genetic exposures and propagate activated states in immune cells. Studying epigenetic alterations by means of genome-wide approaches promises to unravel novel molecular mechanisms related to disease etiology, disease progression, clinical manifestations and treatment responses. This paper reviews what we have learned in the last five years from epigenome-wide studies for three systemic autoimmune diseases, namely systemic lupus erythematosus, primary Sjögren's syndrome, and rheumatoid arthritis. We examine the degree of epigenetic sharing between different diseases and the possible mediating role of epigenetic associations in genetic and environmental risks. Finally, we also shed light into the use of epigenetic markers towards a better precision medicine regarding disease prediction, prevention and personalized treatment in systemic autoimmunity.

7.
Eur J Hum Genet ; 26(5): 709-722, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29422661

RESUMO

Chronic obstructive pulmonary disease (COPD) is a major health burden in adults and cigarette smoking is considered the most important environmental risk factor of COPD. Chromosome 15q25.1 locus is associated with both COPD and smoking. Our study aims at understanding the mechanism underlying the association of chromosome 15q25.1 with COPD through epigenetic and transcriptional variation in a population-based setting. To assess if COPD-associated variants in 15q25.1 are methylation quantitative trait loci, epigenome-wide association analysis of four genetic variants, previously associated with COPD (P < 5 × 10-8) in the 15q25.1 locus (rs12914385:C>T-CHRNA3, rs8034191:T>C-HYKK, rs13180:C>T-IREB2 and rs8042238:C>T-IREB2), was performed in the Rotterdam study (n = 1489). All four variants were significantly associated (P < 1.4 × 10-6) with blood DNA methylation of IREB2, CHRNA3 and PSMA4, of which two, including IREB2 and PSMA4, were also differentially methylated in COPD cases and controls (P < 0.04). Further additive and multiplicative effects of smoking were evaluated and no significant effect was observed. To evaluate if these four genetic variants are expression quantitative trait loci, transcriptome-wide association analysis was performed in 1087 lung samples. All four variants were also significantly associated with differential expression of the IREB2 3'UTR in lung tissues (P < 5.4 × 10-95). We conclude that regulatory mechanisms affecting the expression of IREB2 gene, such as DNA methylation, may explain the association between genetic variants in chromosome 15q25.1 and COPD, largely independent of smoking.

8.
Hum Mol Genet ; 27(2): 396-405, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29092026

RESUMO

Chronic obstructive pulmonary disease (COPD) is among the major health burdens in adults. While cigarette smoking is the leading risk factor, a growing number of genetic variations have been discovered to influence disease susceptibility. Epigenetic modifications may mediate the response of the genome to smoking and regulate gene expression. Chromosome 19q13.2 region is associated with both smoking and COPD, yet its functional role is unclear. Our study aimed to determine whether rs7937 (RAB4B, EGLN2), a top genetic variant in 19q13.2 region identified in genome-wide association studies of COPD, is associated with differential DNA methylation in blood (N = 1490) and gene expression in blood (N = 721) and lungs (N = 1087). We combined genetic and epigenetic data from the Rotterdam Study (RS) to perform the epigenome-wide association analysis of rs7937. Further, we used genetic and transcriptomic data from blood (RS) and from lung tissue (Lung expression quantitative trait loci mapping study), to perform the transcriptome-wide association study of rs7937. Rs7937 was significantly (FDR < 0.05) and consistently associated with differential DNA methylation in blood at 4 CpG sites in cis, independent of smoking. One methylation site (cg11298343-EGLN2) was also associated with COPD (P = 0.001). Additionally, rs7937 was associated with gene expression levels in blood in cis (EGLN2), 42% mediated through cg11298343, and in lung tissue, in cis and trans (NUMBL, EGLN2, DNMT3A, LOC101929709 and PAK2). Our results suggest that changes of DNA methylation and gene expression may be intermediate steps between genetic variants and COPD, but further causal studies in lung tissue should confirm this hypothesis.

9.
Biochim Biophys Acta Gen Subj ; 1862(3): 637-648, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29055820

RESUMO

BACKGROUND: Glycosylation is one of the most common post-translation modifications with large influences on protein structure and function. The effector function of immunoglobulin G (IgG) alters between pro- and anti-inflammatory, based on its glycosylation. IgG glycan synthesis is highly complex and dynamic. METHODS: With the use of two different analytical methods for assessing IgG glycosylation, we aim to elucidate the link between DNA methylation and glycosylation of IgG by means of epigenome-wide association studies. In total, 3000 individuals from 4 cohorts were analyzed. RESULTS: The overlap of the results from the two glycan measurement panels yielded DNA methylation of 7 CpG-sites on 5 genomic locations to be associated with IgG glycosylation: cg25189904 (chr.1, GNG12); cg05951221, cg21566642 and cg01940273 (chr.2, ALPPL2); cg05575921 (chr.5, AHRR); cg06126421 (6p21.33); and cg03636183 (chr.19, F2RL3). Mediation analyses with respect to smoking revealed that the effect of smoking on IgG glycosylation may be at least partially mediated via DNA methylation levels at these 7 CpG-sites. CONCLUSION: Our results suggest the presence of an indirect link between DNA methylation and IgG glycosylation that may in part capture environmental exposures. GENERAL SIGNIFICANCE: An epigenome-wide analysis conducted in four population-based cohorts revealed an association between DNA methylation and IgG glycosylation patterns. Presumably, DNA methylation mediates the effect of smoking on IgG glycosylation.


Assuntos
Metilação de DNA , Imunoglobulina G/química , Processamento de Proteína Pós-Traducional , Fumar/efeitos adversos , Mapeamento Cromossômico , Estudos de Coortes , Ilhas de CpG , Epigenômica/métodos , Europa (Continente) , Glicosilação , Humanos , Imunoglobulina G/metabolismo , Estudos Multicêntricos como Assunto , Polissacarídeos/análise , Estudos em Gêmeos como Assunto
10.
J Hum Genet ; 62(11): 979-988, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29066854

RESUMO

Neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) are important biomarkers for disease development and progression. To gain insight into the genetic causes of variance in NLR and PLR in the general population, we conducted genome-wide association (GWA) analyses and estimated SNP heritability in a sample of 5901 related healthy Dutch individuals. GWA analyses identified a new genome-wide significant locus on the HBS1L-MYB intergenic region for PLR, which replicated in a sample of 2538 British twins. For platelet count, we replicated three known genome-wide significant loci in our cohort (at CCDC71L-PIK3CG, BAK1 and ARHGEF3). For neutrophil count, we replicated the PSMD3 locus. For the identified top SNPs, we found significant cis and trans expression quantitative trait loci effects for several loci involved in hematological and immunological pathways. Linkage Disequilibrium score (LD) regression analyses for PLR and NLR confirmed that both traits are heritable, with a polygenetic SNP heritability for PLR of 14.1%, and for NLR of 2.4%. Genetic correlations were present between ratios and the constituent counts, with the genetic correlation (r=0.45) of PLR with platelet count reaching statistical significance. In conclusion, we established that two important biomarkers have a significant heritable SNP component, and identified the first genome-wide locus for PLR.


Assuntos
Biomarcadores/sangue , Plaquetas , Proteínas de Ligação ao GTP/genética , Estudo de Associação Genômica Ampla , Proteínas de Choque Térmico HSP70/genética , Fatores de Alongamento de Peptídeos/genética , Locos de Características Quantitativas/genética , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Estudos de Coortes , Feminino , Humanos , Desequilíbrio de Ligação/genética , Linfócitos/metabolismo , Masculino , Neutrófilos/metabolismo , Contagem de Plaquetas , Polimorfismo de Nucleotídeo Único/genética , Complexo de Endopeptidases do Proteassoma/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Proteína Killer-Antagonista Homóloga a bcl-2/genética
11.
Forensic Sci Int Genet ; 31: 67-80, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28854398

RESUMO

Monozygotic (MZ) twins share the same STR profile, demonstrating a practical problem in forensic casework. DNA methylation has provided a suitable resource for MZ twin differentiation; however, studies addressing the forensic feasibility are lacking. Here, we investigated epigenetic MZ twin differentiation from blood under the forensic scenario comprising i) the discovery of candidate markers in reference-type blood DNA via genome-wide analysis, ii) the technical validation of candidate markers in reference-type blood DNA using a suitable targeted method, and iii) the analysis of the validated markers in trace-type DNA. Genome-wide methylation analysis in blood DNA from 10 MZ twin pairs resulted in 19-111 twin-differentially methylated sites (tDMSs) per pair with >0.3 twin-to-twin differences. Considering all top three candidate tDMSs across all pairs in the technical validation based on methylation-specific qPCR, 67.85% generated >0.1 twin-to-twin differences. Of the validated tDMSs, 68.4% showed >0.1 twin-to-twin differences with qPCR in trace-type DNA across 8 pairs. Using an updated marker selection strategy, 8 additional candidate tDMSs were obtained for an example MZ pair, of which 7 showed >0.1 twin-to-twin differences in both reference- and trace-type DNA. Lastly, we introduce a high-resolution melting curve analysis of the entire fragment that can complement the proposed approach. Overall, our study demonstrates the general feasibility of epigenetic twin differentiation in the forensic context and highlights that the number of informative tDMSs in the final trace DNA analysis is crucial, as some candidate markers identified in reference DNA were shown not informative in the trace DNA due to various, including technical, reasons. Future studies will need to address the optimal number of epigenetic markers required for reliable identification of MZ twin individuals including statistical considerations.


Assuntos
Impressões Digitais de DNA/métodos , Metilação de DNA , DNA/sangue , Gêmeos Monozigóticos/genética , Ilhas de CpG/genética , Epigênese Genética , Feminino , Marcadores Genéticos , Humanos , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase
13.
Hum Mol Genet ; 25(19): 4339-4349, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27559110

RESUMO

BACKGROUND: Single variant approaches have been successful in identifying DNA methylation quantitative trait loci (mQTL), although as with complex traits they lack the statistical power to identify the effects from rare genetic variants. We have undertaken extensive analyses to identify regions of low frequency and rare variants that are associated with DNA methylation levels. METHODS: We used repeated measurements of DNA methylation from five different life stages in human blood, taken from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. Variants were collapsed across CpG islands and their flanking regions to identify variants collectively associated with methylation, where no single variant was individually responsible for the observed signal. All analyses were undertaken using the sequence kernel association test. RESULTS: For loci where no individual variant mQTL was observed based on a single variant analysis, we identified 95 unique regions where the combined effect of low frequency variants (MAF ≤ 5%) provided strong evidence of association with methylation. For loci where there was previous evidence of an individual variant mQTL, a further 3 regions provided evidence of association between multiple low frequency variants and methylation levels. Effects were observed consistently across 5 different time points in the lifecourse and evidence of replication in the TwinsUK and Exeter cohorts was also identified. CONCLUSION: We have demonstrated the potential of this novel approach to mQTL analysis by analysing the combined effect of multiple low frequency or rare variants. Future studies should benefit from applying this approach as a complementary follow up to single variant analyses.


Assuntos
Metilação de DNA/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Ilhas de CpG/genética , Feminino , Regulação da Expressão Gênica/genética , Frequência do Gene , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética
14.
Epigenomics ; 8(1): 105-17, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26678685

RESUMO

Epigenetics describes the study of cellular modifications that can modify the expression of genes without changing the DNA sequence. DNA methylation is one of the most stable and prevalent epigenetic mechanisms. Twin studies have been a valuable model for unraveling the genetic and epigenetic epidemiology of complex traits, and now offer a potential to dissect the factors that impact DNA methylation variability and its biomedical significance. The twin design specifically allows for the study of genetic, environmental and lifestyle factors, and their potential interactions, on epigenetic profiles. Furthermore, genetically identical twins offer a unique opportunity to assess nongenetic impacts on epigenetic profiles. Here, we summarize recent findings from twin studies of DNA methylation profiles across tissues, to define current knowledge regarding the genetic and nongenetic factors that influence epigenetic variation.


Assuntos
Metilação de DNA , Interação Gene-Ambiente , Gêmeos/genética , Epigênese Genética , Variação Genética , Humanos , Modelos Genéticos , Estudos em Gêmeos como Assunto
15.
Genome Biol Evol ; 7(6): 1490-505, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25977458

RESUMO

We set out to investigate potential differences and similarities between the selective forces acting upon the coding and noncoding regions of five different sets of genes defined according to functional and evolutionary criteria: 1) two reference gene sets presenting accelerated and slow rates of protein evolution (the Complement and Actin pathways); 2) a set of genes with evidence of accelerated evolution in at least one of their introns; and 3) two gene sets related to neurological function (Parkinson's and Alzheimer's diseases). To that effect, we combine human-chimpanzee divergence patterns with polymorphism data obtained from target resequencing 20 central chimpanzees, our closest relatives with largest long-term effective population size. By using the distribution of fitness effect-alpha extension of the McDonald-Kreitman test, we reproduce inferences of rates of evolution previously based only on divergence data on both coding and intronic sequences and also obtain inferences for other classes of genomic elements (untranslated regions, promoters, and conserved noncoding sequences). Our results suggest that 1) the distribution of fitness effect-alpha method successfully helps distinguishing different scenarios of accelerated divergence (adaptation or relaxed selective constraints) and 2) the adaptive history of coding and noncoding sequences within the gene sets analyzed is decoupled.


Assuntos
Evolução Molecular , Pan troglodytes/genética , Seleção Genética , Actinas/genética , Animais , Proteínas do Sistema Complemento/genética , Genes , Humanos , Íntrons , Mutação , Fases de Leitura Aberta , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Regiões não Traduzidas
16.
PLoS One ; 9(11): e113090, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25402503

RESUMO

OBJECTIVE: CD5 plays a crucial role in autoimmunity and is a well-established genetic risk factor of developing RA. Recently, evidence of positive selection has been provided for the CD5 Pro224-Val471 haplotype in East Asian populations. The aim of the present work was to further analyze the functional relevance of non-synonymous CD5 polymorphisms conforming the ancestral and the newly derived haplotypes (Pro224-Ala471 and Pro224-Val471, respectively) as well as to investigate the potential role of CD5 on the development of SLE and/or SLE nephritis. METHODS: The CD5 SNPs rs2241002 (C/T; Pro224Leu) and rs2229177 (C/T; Ala471Val) were genotyped using TaqMan allelic discrimination assays in a total of 1,324 controls and 681 SLE patients of Spanish origin. In vitro analysis of CD3-mediated T cell proliferative and cytokine response profiles of healthy volunteers homozygous for the above mentioned CD5 haplotypes were also analyzed. RESULTS: T-cell proliferation and cytokine release were significantly increased showing a bias towards to a Th2 profile after CD3 cross-linking of peripheral mononuclear cells from healthy individuals homozygous for the ancestral Pro224-Ala471 (CC) haplotype, compared to the more recently derived Pro224-Val471 (CT). The same allelic combination was statistically associated with Lupus nephritis. CONCLUSION: The ancestral Ala471 CD5 allele confers lymphocyte hyper-responsiveness to TCR/CD3 cross-linking and is associated with nephritis in SLE patients.


Assuntos
Antígenos CD5/genética , Haplótipos/genética , Lúpus Eritematoso Sistêmico/genética , Nefrite Lúpica/etiologia , Ativação Linfocitária/imunologia , Polimorfismo Genético/genética , Linfócitos T/imunologia , Alelos , Autoimunidade/imunologia , Estudos de Casos e Controles , Predisposição Genética para Doença , Genótipo , Humanos , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/imunologia , Nefrite Lúpica/diagnóstico
17.
PLoS Genet ; 10(2): e1004128, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24586184

RESUMO

Extreme differences in allele frequency between West Africans and Eurasians were observed for a leucine-to-valine substitution (Leu372Val) in the human intestinal zinc uptake transporter, ZIP4, yet no further evidence was found for a selective sweep around the ZIP4 gene (SLC39A4). By interrogating allele frequencies in more than 100 diverse human populations and resequencing Neanderthal DNA, we confirmed the ancestral state of this locus and found a strong geographical gradient for the derived allele (Val372), with near fixation in West Africa. In extensive coalescent simulations, we show that the extreme differences in allele frequency, yet absence of a classical sweep signature, can be explained by the effect of a local recombination hotspot, together with directional selection favoring the Val372 allele in Sub-Saharan Africans. The possible functional effect of the Leu372Val substitution, together with two pathological mutations at the same codon (Leu372Pro and Leu372Arg) that cause acrodermatitis enteropathica (a disease phenotype characterized by extreme zinc deficiency), was investigated by transient overexpression of human ZIP4 protein in HeLa cells. Both acrodermatitis mutations cause absence of the ZIP4 transporter cell surface expression and nearly absent zinc uptake, while the Val372 variant displayed significantly reduced surface protein expression, reduced basal levels of intracellular zinc, and reduced zinc uptake in comparison with the Leu372 variant. We speculate that reduced zinc uptake by the ZIP4-derived Val372 isoform may act by starving certain pathogens of zinc, and hence may have been advantageous in Sub-Saharan Africa. Moreover, these functional results may indicate differences in zinc homeostasis among modern human populations with possible relevance for disease risk.


Assuntos
Acrodermatite/genética , Proteínas de Transporte de Cátions/genética , Genética Populacional , Seleção Genética/genética , Zinco/deficiência , Acrodermatite/patologia , África ao Sul do Saara , Regulação da Expressão Gênica/genética , Frequência do Gene , Células HeLa , Humanos , Mutação
18.
Mol Biol Evol ; 29(2): 811-23, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21998275

RESUMO

CD5 is a lymphocyte surface coreceptor of still incompletely understood function. Currently available information indicates that CD5 participates not only in cell-to-cell immune interactions through still poorly defined endogenous ligands expressed on hemopoietic and nonhemopoietic cells but also in recognition of exogenous and highly conserved microbial structures such as fungal ß-glucans. Preceding single nucleotide polymorphism (SNP) data analysis provided evidence for a recent selective sweep in East Asia and suggested a nonsynonymous substitution at position 471 (A471V; rs2229177) of the cytoplasmatic region of the CD5 receptor as the most plausible target of selection. The present report further investigates the role of natural selection in the CD5 gene by a resequencing approach in 60 individuals representing populations from 3 different continents (20 Africans, 20 Europeans and 20 East Asians) and by functionally assaying the relevance of the A471V replacement on CD5 signaling. The high differentiation pattern found at the nonsynonymous A471V site together with the low diversity, most of the performed neutrality tests (Tajima's D, Fu and Li's F* and D*, and Fu's Fs) and the predominance of a major haplotype in East Asians strongly argue in favor of positive selection for the A471V site. Importantly, anti-CD5 monoclonal antibody cross-linking unveiled significant differences among A471V variants regarding the mitogen-activated protein kinase (MAPK) cascade activation on COS7 and on human peripheral blood mononuclear cells. Similar differences on MAPK activation and IL-8 cytokine release were also observed upon exposure of HEK293 cell transfectants expressing the A471V variants to Zymosan, a ß-glucan-rich fungal particle. Taken together, the results provide evidence for the hypothesis of an adaptive role of the A471V substitution to environmental challenges, most likely infectious pathogens, in East Asian populations.


Assuntos
Antígenos CD5/genética , Sistema de Sinalização das MAP Quinases/genética , Receptores Imunológicos/genética , Seleção Genética , Anticorpos Monoclonais , Sequência de Bases , Antígenos CD5/imunologia , Linhagem Celular Transformada , Evolução Molecular , Variação Genética , Genótipo , Células HEK293 , Haplótipos , Humanos , Interleucina-8/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Zimosan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA