Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-33557243

RESUMO

Increasing contamination of the environment by toxic compounds such as endocrine disrupting chemicals (EDCs) is one of the major causes of reproductive defects in both sexes. Estrogen/androgen pathways are of utmost importance in gonadal development, determination of secondary sex characteristics and gametogenesis. Most of the EDCs mediate their action through respective receptors and/or downstream signaling. The purpose of this review is to highlight the mechanism by which EDCs can trigger antagonistic or agonistic response, acting through estrogen/androgen receptors causing reproductive defects that lead to infertility. In vitro, in vivo and in silico studies focusing on the impact of EDCs on estrogen/androgen pathways and related proteins published in the last decade were considered for the review. PUBMED and PUBCHEM were used for literature search. EDCs can bind to estrogen receptors (ERα and ERß) and androgen receptors or activate alternative receptors such as G protein-coupled receptors (GPCR), GPR30, estrogen-related receptor (ERRγ) to activate estrogen signaling via downstream kinases. Bisphenol A, dichlorodiphenyltrichloroethane, dichlorodiphenyldichloroethylene, polychlorinated biphenyls and phthalates are major toxicants that interfere with the normal estrogen/androgen pathways leading to infertility in both sexes through many ways, including DNA damage in spermatozoids, altered methylation pattern, histone modifications and miRNA expression.

2.
Arch Toxicol ; 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33550444

RESUMO

Synthetic cathinones are among the most popular new psychoactive substances, being abused for their stimulant properties, which are similar to those of amphetamine and 3,4-methylenedioxymethamphetamine (MDMA). Considering that the liver is a likely target for cathinones-induced toxicity, and for their metabolic activation/detoxification, we aimed to determine the hepatotoxicity of three commonly abused synthetic cathinones: butylone, α-methylamino-butyrophenone (buphedrone) and 3,4-dimethylmethcathinone (3,4-DMMC). We characterized their cytotoxic profile in primary rat hepatocytes (PRH) and in the HepaRG and HepG2 cell lines. PRH was the most sensitive cell model, showing the lowest EC50 values for all three substances (0.158 mM for 3,4-DMMC; 1.21 mM for butylone; 1.57 mM for buphedrone). Co-exposure of PRH to the synthetic cathinones and CYP450 inhibitors (selective and non-selective) proved that hepatic metabolism reduced the toxicity of buphedrone but increased that of butylone and 3,4-DMMC. All compounds were able to increase oxidative stress, disrupting mitochondrial homeostasis and inducing apoptotic and necrotic features, while also increasing the occurrence of acidic vesicular organelles in PRH, compatible with autophagic activation. In conclusion, butylone, buphedrone and 3,4-DMMC have hepatotoxic potential, and their toxicity lies in the interference with a number of homeostatic processes, while being influenced by their metabolic fate.

3.
Crit Rev Food Sci Nutr ; : 1-57, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33554619

RESUMO

Type 2 diabetes (T2D) is an expanding global health problem, resulting from defects in insulin secretion and/or insulin resistance. In the past few years, both protein tyrosine phosphatase 1B (PTP1B) and dipeptidyl peptidase-4 (DPP-4), as well as their role in T2D, have attracted the attention of the scientific community. PTP1B plays an important role in insulin resistance and is currently one of the most promising targets for the treatment of T2D, since no available PTP1B inhibitors were still approved. DPP-4 inhibitors are among the most recent agents used in the treatment of T2D (although its use has been associated with possible cardiovascular adverse events). The antidiabetic properties of flavonoids are well-recognized, and include inhibitory effects on the above enzymes, although hitherto not therapeutically explored. In the present study, a comprehensive review of the literature of both synthetic and natural isolated flavonoids as inhibitors of PTP1B and DPP-4 activities is made, including their type of inhibition and experimental conditions, and structure-activity relationship, covering a total of 351 compounds. We intend to provide the most favorable chemical features of flavonoids for the inhibition of PTP1B and DPP-4, gathering information for the future development of compounds with improved potential as T2D therapeutic agents.

4.
Pharmaceuticals (Basel) ; 14(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513867

RESUMO

Tramadol and tapentadol, two structurally related synthetic opioid analgesics, are widely prescribed due to the enhanced therapeutic profiles resulting from the synergistic combination between µ-opioid receptor (MOR) activation and monoamine reuptake inhibition. However, the number of adverse reactions has been growing along with their increasing use and misuse. The potential toxicological mechanisms for these drugs are not completely understood, especially for tapentadol, owing to its shorter market history. Therefore, in the present study, we aimed to comparatively assess the putative lung, cardiac, and brain cortex toxicological damage elicited by the repeated exposure to therapeutic doses of both prescription opioids. To this purpose, male Wistar rats were intraperitoneally injected with single daily doses of 10, 25, and 50 mg/kg tramadol or tapentadol, corresponding to a standard analgesic dose, an intermediate dose, and the maximum recommended daily dose, respectively, for 14 consecutive days. Such treatment was found to lead mainly to lipid peroxidation and inflammation in lung and brain cortex tissues, as shown through augmented thiobarbituric acid reactive substances (TBARS), as well as to increased serum inflammation biomarkers, such as C reactive protein (CRP) and tumor necrosis factor-α (TNF-α). Cardiomyocyte integrity was also shown to be affected, since both opioids incremented serum lactate dehydrogenase (LDH) and α-hydroxybutyrate dehydrogenase (α-HBDH) activities, while tapentadol was associated with increased serum creatine kinase muscle brain (CK-MB) isoform activity. In turn, the analysis of metabolic parameters in brain cortex tissue revealed increased lactate concentration upon exposure to both drugs, as well as augmented LDH and creatine kinase (CK) activities following tapentadol treatment. In addition, pneumo- and cardiotoxicity biomarkers were quantified at the gene level, while neurotoxicity biomarkers were quantified both at the gene and protein levels; changes in their expression correlate with the oxidative stress, inflammatory, metabolic, and histopathological changes that were detected. Hematoxylin and eosin (H & E) staining revealed several histopathological alterations, including alveolar collapse and destruction in lung sections, inflammatory infiltrates, altered cardiomyocytes and loss of striation in heart sections, degenerated neurons, and accumulation of glial and microglial cells in brain cortex sections. In turn, Masson's trichrome staining confirmed fibrous tissue deposition in cardiac tissue. Taken as a whole, these results show that the repeated administration of both prescription opioids extends the dose range for which toxicological injury is observed to lower therapeutic doses. They also reinforce previous assumptions that tramadol and tapentadol are not devoid of toxicological risk even at clinical doses.

5.
Toxicol Rep ; 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33294384

RESUMO

COVID-19 pandemic mitigation strategies are mainly based on social distancing measures and healthcare system reinforcement. However, many countries in Europe and elsewhere implemented strict, horizontal lockdowns because of extensive viral spread in the community which challenges the capacity of the healthcare systems. However, strict lockdowns have various untintended adverse social, economic and health effects, which have yet to be fully elucidated, and have not been considered in models examining the effects of various mitigation measures. Unlike commonly suggested, the dilemma is not about health vs wealth because the economic devastation of long-lasting lockdowns will definitely have adverse health effects in the population. Furthermore, they cannot provide a lasting solution in pandemic containment, potentially resulting in a vicious cycle of consecutive lockdowns with in-between breaks. Hospital preparedness has been the main strategy used by governments. However, a major characteristic of the COVID-19 pandemic is the rapid viral transmission in populations with no immunity. Thus, even the best hospital system could not cope with the demand. Primary, community and home care are the only viable strategies that could achieve the goal of pandemic mitigation. We present the case example of Greece, a country which followed a strategy focused on hospital preparedness but failed to reinforce primary and community care. This, along with strategic mistakes in epidemiological surveillance, resulted in Greece implementing a second strict, horizontal lockdown and having one of the highest COVID-19 death rates in Europe during the second wave. We provide recommendations for measures that will reinstate primary and community care at the forefront in managing the current public health crisis by protecting hospitals from unnecessary admissions, providing primary and secondary prevention services in relation to COVID-19 and maintaining population health through treatment of non-COVID-19 conditions. This, together with more selective social distancing measures (instead of horizontal lockdowns), represents the only viable and realistic long-term strategy for COVID-19 pandemic mitigation.

6.
Arch Toxicol ; 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33215236

RESUMO

3,4-Methylenedioxypyrovalerone (MDPV) is consumed worldwide, despite its potential to cause toxicity in several organs and even death. There is a recognized need to clarify the biological pathways through which MDPV elicits general and target-organ toxicity. In this work, a comprehensive untargeted GC-MS-based metabolomics analysis was performed, aiming to detect metabolic changes in putative target organs (brain, heart, kidneys and liver) but also in urine of mice after acute exposure to human-relevant doses of MDPV. Male CD-1 mice received binge intraperitoneal administrations of saline or MDPV (2.5 mg/kg or 5 mg/kg) every 2 h, for a total of three injections. Twenty-four hours after the first administration, target organs, urine and blood samples were collected for metabolomics, biochemical and histological analysis. Hepatic and renal tissues of MDPV-treated mice showed moderate histopathological changes but no significant differences were found in plasma and tissue biochemical markers of organ injury. In contrast, the multivariate analysis significantly discriminated the organs and urine of MDPV-treated mice from the control (except for the lowest dose in the brain), allowing the identification of a panoply of metabolites. Those levels were significantly deviated in relation to physiological conditions and showed an organ specific response towards the drug. Kidneys and liver showed the greatest metabolic changes. Metabolites related with energetic metabolism, antioxidant defenses and inflammatory response were significantly changed in the liver of MDPV-dosed animals, while the kidneys seem to have developed an adaptive response against oxidative stress caused by MDPV. On the other hand, the dysregulation of metabolites that contribute to metabolic acidosis was also observed in this organ. The heart showed an increase of fatty acid biosynthesis, possibly as an adaptation to maintain the cardiac energy homeostasis. In the brain, changes in 3-hydroxybutyric acid levels may reflect the activation of a neurotoxic pathway. However, the increase in metabolites with neuroprotective properties seems to counteract this change. Metabolic profiling of urine from MDPV-treated mice suggested that glutathione-dependent antioxidant pathways may be particularly involved in the compensatory mechanism to counteract oxidative stress induced by MDPV. Overall, this study reports, for the first time, the metabolic profile of liver, kidneys, heart, brain, and urine of MDPV-dosed mice, providing unique insights into the biological pathways of toxicity. Our findings also underline the value of toxicometabolomics as a robust and sensitive tool for detecting adaptive/toxic cellular responses upon exposure to a physiologically relevant dose of a toxic agent, earlier than conventional toxicity tests.

7.
Pharmacol Res ; : 105237, 2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33053442

RESUMO

The endocannabinoid (eCB) system is a complex system comprising endogenous cannabinoids (eCBs), their synthesis and degradation enzymes, and cannabinoid receptors. These elements crucially regulate several biological processes during neurodevelopment, such as proliferation, differentiation, and migration. Recently, eCBs were also reported to have an epigenetic action on genes that play key functions in the neurotransmitter signaling, consequently regulating their expression. In turn, epigenetic modifications (e.g. DNA methylation, histone modifications) may also modulate the function of eCB system's elements. For example, the expression of the cnr gene in the central nervous system may be epigenetically regulated (e.g. DNA methylation, histone modifications), thus altering the function of the cannabinoid receptor type-1 (CB1R). Considering the importance of the eCB system during neurodevelopment, it is thus reasonable to expect that alterations in this interaction between the eCB system and epigenetic modifications may give rise to neurodevelopmental disorders. Here, we review key concepts related to the regulation of neuronal function by the eCB system and the different types of epigenetic modifications. In particular, we focus on the mechanisms involved in the intricate interplay between both signaling systems and how they control cell fate during neurodevelopment. Noteworthy, such mechanistic understanding assumes high relevance considering the implications of the dysregulation of key neurogenic processes towards the onset of neurodevelopment-related disorders. Moreover, considering the increasing popularity of cannabis and its synthetic derivatives among young adults, it becomes of utmost importance to understand how exogenous cannabinoids may epigenetically impact neurodevelopment.

8.
Med Res Rev ; 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33084093

RESUMO

Obesity is a global health problem that affects all age groups in both developing and developed countries. In recent years, the prevalence of overweight and obesity has reached pandemic levels, resulting in a dramatic increase in the incidence of various comorbidities, such as cardiovascular diseases, type 2 diabetes, and cancer, consequently leading to massive health and socioeconomic burdens. Together with lifestyle changes, antiobesity pharmacotherapy is gaining momentum as an adjunctive treatment. However, the available pharmacological approaches have limited use owing to either significant adverse effects or low efficacy. Over the years, natural products have been an important source of lead compounds for drug discovery. Among these, flavonoids are associated with important biological effects and health-promoting activities. In this review, we discuss the modulatory effects of flavonoids on obesity and their potential mechanisms of action. The literature strongly suggests that most common flavonoids demonstrate a pronounced effect on obesity as shown by their ability to lower body weight, fat mass, and plasma triglycerides/cholesterol, both in in vitro and in vivo models. The impact of flavonoids on obesity can be observed through different mechanisms: reducing food intake and fat absorption, increasing energy expenditure, modulating lipid metabolism, or regulating gut microbiota profile. A better understanding of the known antiobesity mechanisms of flavonoids will enable their potential use to treat this medical condition. Therefore, this review focuses on the putative biological mechanisms through which flavonoids may prevent or treat obesity and highlights new perspectives on future pharmacological use.

9.
Int J Mol Sci ; 21(17)2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32872617

RESUMO

Recreational use of synthetic cannabinoids (SCs) before and during pregnancy poses a major public health risk, due to the potential onset of neurodevelopmental disorders in the offspring. Herein, we report the assessment of the neurotoxic potential of two commonly abused SCs, THJ-2201 and 5F-PB22, particularly focusing on how they affect neuronal differentiation in vitro. Differentiation ratios, total neurite length, and neuronal marker expression were assessed in NG108-15 neuroblastoma x glioma cells exposed to the SCs at non-toxic, biologically relevant concentrations (≤1 µM), either in acute or repeated exposure settings. Both SCs enhanced differentiation ratios and total neurite length of NG108-15 cells near two-fold compared to vehicle-treated cells, in a CB1R activation-dependent way, as the CB1R blockade with a specific antagonist (SR141718) abrogated SC-induced effects. Interestingly, repeated 5F-PB22 exposure was required to reach effects similar to a single THJ-2201 dose. Cell viability and proliferation, mitochondrial membrane potential, and intracellular ATP levels were also determined. The tested SCs increased mitochondrial tetramethyl rhodamine ethyl ester (TMRE) accumulation after 24 h at biologically relevant concentrations but did not affect any of the other toxicological parameters. Overall, we report firsthand the CB1R-mediated enhancement of neurodifferentiation by 5F-PB22 and THJ-2201 at biologically relevant concentrations.

10.
Arch Toxicol ; 94(12): 4067-4084, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32894303

RESUMO

Mitoxantrone (MTX) is used to treat several types of cancers and to improve neurological disability in multiple sclerosis. Unfortunately, cardiotoxicity is a severe and common adverse effect in MTX-treated patients. Herein, we aimed to study early and late mechanisms of MTX-induced cardiotoxicity using murine HL-1 cardiomyocytes. Cells were exposed to MTX (0.1, 1 or 10 µM) during short (2, 4, 6, or 12 h) or longer incubation periods (24 or 48 h). At earlier time points, (6 and 12 h) cytotoxicity was already observed for 1 and 10 µM MTX. Proteomic analysis of total protein extracts found 14 proteins with higher expression and 26 with lower expression in the cells exposed for 12 h to MTX (pH gradients 4-7 and 6-11). Of note, the expression of the regulatory protein 14-3-3 protein epsilon was increased by a factor of two and three, after exposure to 1 and 10 µM MTX, respectively. At earlier time-points, 10 µM MTX increased intracellular ATP levels, while decreasing media lactate levels. At later stages (24 and 48 h), MTX-induced cytotoxicity was concentration and time-dependent, according to the MTT reduction and lactate dehydrogenase leakage assays, while caspase-9, -8 and -3 activities increased at 24 h. Regarding cellular redox status, total glutathione increased in 1 µM MTX (24 h), and that increase was dependent on gamma-glutamylcysteine synthetase activity. Meanwhile, for both 1 and 10 µM MTX, oxidized glutathione was significantly higher than control at 48 h. Moreover, MTX was able to significantly decrease proteasomal chymotrypsin-like activity in a concentration and time-independent manner. In summary, MTX significantly altered proteomic, energetic and oxidative stress homeostasis in cardiomyocytes at clinically relevant concentrations and our data clearly demonstrate that MTX causes early cardiotoxicity that needs further study.

11.
Daru ; 28(2): 807-812, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32851596

RESUMO

BACKGROUND: The pandemic associated with the new SARS-CoV-2 coronavirus continues to spread worldwide. The most favorable epidemic control scenario, which provides long-term protection against COVID-19 outbreak, is the development and distribution of an effective and safe vaccine. The need to develop a new COVID-19 vaccine is pressing; however, it is likely to take a long time, possibly several years. This is due to the time required to demonstrate the safety and efficacy of the proposed vaccine. and the time required to manufacture and distribute millions of doses. OBJECTIVES: To accelerate this development and associated safety testing, the deliberate infection of healthy volunteers has been suggested. The purpose of this short communication is to describe the ethical aspects of this type of testing, RESULTS: Deliberate infection of volunteers with a dangerous virus such as SARS-CoV-2 was initially considered unethical by researchers; but the current pandemic is so different from previous ones that these studies are considered ethical if certain criteria are met. Participants in human challenge studies must be relatively young, in good health and must receive the highest quality medical care, with frequent monitoring. Tests should also be performed with great caution and specialized medical supervision. Besides, the fact that obtaining vaccines faster through deliberate infection studies of healthy people has greater benefits than risks, has been demonstrated by obtaining other vaccines in other historical pandemics such as: smallpox, influenza, malaria, typhoid fever, Dengue fever and Zika. CONCLUSIONS: One possibility to shorten the time required for the development of COVID-19 vaccines is to reduce clinical phases II and III by using human challenge studies through eliberate infection of healthy volunteers with SARS-CoV-2 after administration of the candidate vaccine. Accelerating the development of a COVID-19 vaccine even for a few weeks or months would have a great beneficial impact on public health by saving many lives.

13.
Pharmaceuticals (Basel) ; 13(7)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664348

RESUMO

Tramadol and tapentadol are fully synthetic and extensively used analgesic opioids, presenting enhanced therapeutic and safety profiles as compared with their peers. However, reports of adverse reactions, intoxications and fatalities have been increasing. Information regarding the molecular, biochemical, and histological alterations underlying their toxicological potential is missing, particularly for tapentadol, owing to its more recent market authorization. Considering the paramount importance of liver and kidney for the metabolism and excretion of both opioids, these organs are especially susceptible to toxicological damage. In the present study, we aimed to characterize the putative hepatic and renal deleterious effects of repeated exposure to therapeutic doses of tramadol and tapentadol, using an in vivo animal model. Male Wistar rats were randomly divided into six experimental groups, composed of six animals each, which received daily single intraperitoneal injections of 10, 25 or 50 mg/kg tramadol or tapentadol (a low, standard analgesic dose, an intermediate dose and the maximum recommended daily dose, respectively). An additional control group was injected with normal saline. Following 14 consecutive days of administration, serum, urine and liver and kidney tissue samples were processed for biochemical, metabolic and histological analysis. Repeated administration of therapeutic doses of both opioids led to: (i) increased lipid and protein oxidation in liver and kidney, as well as to decreased total liver antioxidant capacity; (ii) decreased serum albumin, urea, butyrylcholinesterase and complement C3 and C4 levels, denoting liver synthesis impairment; (iii) elevated serum activity of liver enzymes, such as alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and γ-glutamyl transpeptidase, as well as lipid profile alterations, also reflecting hepatobiliary commitment; (iv) derangement of iron metabolism, as shown through increases in serum iron, ferritin, haptoglobin and heme oxygenase-1 levels. In turn, elevated serum cystatin C, decreased urine creatinine output and increased urine microalbumin levels were detected upon exposure to tapentadol only, while increased serum amylase and urine N-acetyl-ß-D-glucosaminidase activities were observed for both opioids. Collectively, these results are compatible with kidney injury. Changes were also found in the expression levels of liver- and kidney-specific toxicity biomarker genes, upon exposure to tramadol and tapentadol, correlating well with alterations in lipid profile, iron metabolism and glomerular and tubular function. Histopathological analysis evidenced sinusoidal dilatation, microsteatosis, mononuclear cell infiltrates, glomerular and tubular disorganization, and increased Bowman's spaces. Although some findings are more pronounced upon tapentadol exposure, our study shows that, when compared with acute exposure, prolonged administration of both opioids smooths the differences between their toxicological effects, and that these occur at lower doses within the therapeutic range.

14.
Molecules ; 25(12)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580417

RESUMO

Magnetic hyperthermia (MHT) is being investigated as a cancer treatment since the 1950s. Recent advancements in the field of nanotechnology have resulted in a notable increase in the number of MHT studies. Most of these studies explore MHT as a stand-alone treatment or as an adjuvant therapy in a preclinical context. However, despite all the scientific effort, only a minority of the MHT-devoted nanomaterials and approaches made it to clinical context. The outcome of an MHT experiment is largely influenced by a number of variables that should be considered when setting up new MHT studies. This review highlights and discusses the main parameters affecting the outcome of preclinical MHT, aiming to provide adequate assistance in the design of new, more efficient MHT studies.

15.
Arch Toxicol ; 94(8): 2829-2845, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32504122

RESUMO

Drug-induced Mood- and Cognition-related adverse events (MCAEs) are often only detected during the clinical trial phases of drug development, or even after marketing, thus posing a major safety concern and a challenge for both pharmaceutical companies and clinicians. To fill some gaps in the understanding and elucidate potential biological mechanisms of action frequently associated with MCAEs, we present a unique workflow linking observational population data with the available knowledge at molecular, cellular, and psychopharmacology levels. It is based on statistical analysis of pharmacovigilance reports and subsequent signaling pathway analyses, followed by evidence-based expert manual curation of the outcomes. Our analysis: (a) ranked pharmaceuticals with high occurrence of such adverse events (AEs), based on disproportionality analysis of the FDA Adverse Event Reporting System (FAERS) database, and (b) identified 120 associated genes and common pathway nodes possibly underlying MCAEs. Nearly two-thirds of the identified genes were related to immune modulation, which supports the critical involvement of immune cells and their responses in the regulation of the central nervous system function. This finding also means that pharmaceuticals with a negligible central nervous system exposure may induce MCAEs through dysregulation of the peripheral immune system. Knowledge gained through this workflow unravels putative hallmark biological targets and mediators of drug-induced mood and cognitive disorders that need to be further assessed and validated in experimental models. Thereafter, they can be used to substantially improve in silico/in vitro/in vivo tools for predicting these adversities at a preclinical stage.

16.
Arch Toxicol ; 94(7): 2481-2503, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32382956

RESUMO

Cathinones (ß-keto amphetamines), widely abused in recreational settings, have been shown similar or even worse toxicological profile than classical amphetamines. In the present study, the cytotoxicity of two ß-keto amphetamines [3,4-dimethylmethcathinone (3,4-DMMC) and 4-methylmethcathinone (4-MMC)], was evaluated in differentiated dopaminergic SH-SY5Y cells in comparison to methamphetamine (METH). MTT reduction and NR uptake assays revealed that both cathinones and METH induced cytotoxicity in a concentration- and time-dependent manner. Pre-treatment with trolox (antioxidant) partially prevented the cytotoxicity induced by all tested drugs, while N-acetyl-L-cysteine (NAC; antioxidant and glutathione precursor) and GBR 12909 (dopamine transporter inhibitor) partially prevented the cytotoxicity induced by cathinones, as evaluated by the MTT reduction assay. Unlike METH, cathinones induced oxidative stress evidenced by the increase on intracellular levels of reactive oxygen species (ROS), and also by the decrease of intracellular glutathione levels. Trolox prevented, partially but significantly, the ROS generation elicited by cathinones, while NAC inhibited it completely. All tested drugs induced mitochondrial dysfunction, since they led to mitochondrial membrane depolarization and to intracellular ATP depletion. Activation of caspase-3, indicative of apoptosis, was seen both for cathinones and METH, and confirmed by annexin V and propidium iodide positive staining. Autophagy was also activated by all drugs tested. Pre-incubation with bafilomycin A1, an inhibitor of the vacuolar H+-ATPase, only protected against the cytotoxicity induced by METH, which indicates dissimilar toxicological pathways for the tested drugs. In conclusion, the mitochondrial impairment and oxidative stress observed for the tested cathinones may be key factors for their neurotoxicity, but different outcome pathways seem to be involved in the adverse effects, when compared to METH.

17.
Food Chem Toxicol ; 141: 111392, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32360219

RESUMO

Carotenoids are ubiquitously distributed in nature, ß-carotene being the most frequently found carotenoid in the human diet. In the human body, ß-carotene is absorbed, distributed and metabolized by enzymatic and/or non-enzymatic oxidant cleavage into several metabolites. Despite the broadly accepted biological value of ß-carotene, it has also been considered a double-edged sword, mainly due to its potential antioxidant versus pro-oxidant behaviour. In this sense, the aim of this work was to scrutinize the antioxidant or pro-oxidant potential of ß-carotene and its metabolites, namely trans-ß-apo-8'-carotenal and ß-ionone. Several parameters were evaluated in this study, viz. their effects on reactive species production, both in human whole blood and neutrophils; their effects on lipid peroxidation, in the absence and presence of peroxynitrite anion (ONOO-) or hydrogen peroxide (H2O2), using a synaptosomal model; and finally, their putative genotoxic effects in the human hepatic HepG2 cell line. In general, depending on the cellular model and conditions tested, ß-carotene and its metabolites revealed antioxidant effects to varying degrees without significant pro-oxidant or genotoxic effects.

18.
Int J Mol Med ; 46(1): 3-16, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32377694

RESUMO

In the current context of the pandemic triggered by SARS-COV-2, the immunization of the population through vaccination is recognized as a public health priority. In the case of SARS­COV­2, the genetic sequencing was done quickly, in one month. Since then, worldwide research has focused on obtaining a vaccine. This has a major economic impact because new technological platforms and advanced genetic engineering procedures are required to obtain a COVID­19 vaccine. The most difficult scientific challenge for this future vaccine obtained in the laboratory is the proof of clinical safety and efficacy. The biggest challenge of manufacturing is the construction and validation of production platforms capable of making the vaccine on a large scale.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Vacinas Virais , Infecções por Coronavirus/classificação , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/terapia , Composição de Medicamentos/métodos , Composição de Medicamentos/normas , Composição de Medicamentos/tendências , Desenvolvimento de Medicamentos/métodos , Desenvolvimento de Medicamentos/normas , Desenvolvimento de Medicamentos/tendências , Humanos , Segurança do Paciente , Pneumonia Viral/epidemiologia , Pneumonia Viral/terapia , Resultado do Tratamento , Vacinação/efeitos adversos , Potência de Vacina , Vacinas Virais/classificação , Vacinas Virais/normas , Vacinas Virais/provisão & distribução , Vacinas Virais/uso terapêutico
19.
Toxicology ; 441: 152503, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32470494

RESUMO

3,4-Methylenedioxypyrovalerone (MDPV) is one of the most popular cathinone derivatives worldwide and has recently been associated with several intoxications and deaths, in which, similarly to amphetamines, hyperthermia appears to play a prominent role. However, there remains a huge information gap underlying the mechanisms associated with its hepatotoxicity, namely under hyperthermic conditions. Here, we use a sensitive untargeted metabolomic approach based on gas chromatography-mass spectrometry (GC-MS) to investigate the effect of subtoxic and toxic concentrations of MDPV on the metabolic profile of primary mouse hepatocytes (PMH), under normothermic and hyperthermic conditions. For this purpose, hepatocytes were exposed to increasing concentrations of MDPV (LC01, LC10 and LC30) for 24 h, at 37 °C or 40.5 °C, and alterations on both intracellular metabolome and extracellular volatilome were evaluated. Multivariate analysis showed a clear separation between MDPV exposed cells and control cells in normothermic conditions, even at subtoxic concentrations (LC01 and LC10). In normothermia, there was a significant dysregulation of pathways associated with ascorbate metabolism, tricarboxylic acid (TCA) cycle and pyruvate metabolism. These metabolic changes were significantly increased at 40.5 °C, and several other pathways appear to be affected with the evolution of toxicity caused by MDPV under hyperthermic conditions, namely aspartate and glutamate metabolism, phenylalanine and tyrosine biosynthesis, aminoacyl-tRNA biosynthesis, butanoate metabolism, among others. Overall, our findings provide novel insights into the mechanism of hepatotoxicity triggered by MDPV and highlight the higher risks that may occur under hyperthermic conditions.


Assuntos
Benzodioxóis/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Fígado/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Pirrolidinas/toxicidade , Animais , Relação Dose-Resposta a Droga , Hepatócitos/efeitos dos fármacos , Temperatura Alta , Fígado/citologia , Redes e Vias Metabólicas/efeitos dos fármacos , Camundongos , Temperatura
20.
Drug Alcohol Depend ; 212: 108045, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32460203

RESUMO

Synthetic phenethylamines are widely abused drugs, comprising new psychoactive substances such as synthetic cathinones, but also well-known amphetamines such as methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy). Cathinones and amphetamines share many toxicodynamic mechanisms. One of their potentially life-threatening consequences, particularly of MDMA, is serotonin-mediated hyponatraemia. Herein, we review the state of the art on phenethylamine-induced hyponatremia; discuss the mechanisms involved; and present the preventive and therapeutic measures. Hyponatraemia mediated by phenethylamines results from increased secretion of antidiuretic hormone (ADH) and consequent kidney water reabsorption, additionally involving diaphoresis and polydipsia. Data for MDMA suggest that acute hyponatraemia elicited by cathinones may also be a consequence of metabolic activation. The literature often reveals hyponatraemia-associated complications such as cerebral oedema, cerebellar tonsillar herniation and coma that may evolve to a fatal outcome, particularly in women. Ready availability of fluids and the recommendation to drink copiously at the rave scene to counteract hyperthermia, often precipitate water intoxication. Users should be advised about the importance of controlling fluid intake while using phenethylamines. At early signs of adverse effects, medical assistance should be promptly sought. Severe hyponatraemia (<130 mmol sodium/L plasma) may be corrected with hypertonic saline or suppression of fluid intake. Also, clinicians should be made aware of the hyponatraemic potential of these drugs and encouraged to report future cases of toxicity to increase knowledge on this potentially lethal outcome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...