Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 565
Filtrar
1.
mSphere ; 4(4)2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391283

RESUMO

Cryptococcus neoformans is an important fungal pathogen, causing life-threatening pneumonia and meningoencephalitis. Brain dissemination of C. neoformans is thought to be a consequence of an active infection in the lung which then extravasates to other sites. Brain invasion results from dissemination via either transport by free yeast cells in the bloodstream or Trojan horse transport within mononuclear phagocytes. We assessed brain dissemination in three mouse models of infection: intravenous, intratracheal, and intranasal models. All three modes of infection resulted in dissemination of C. neoformans to the brain in less than 3 h. Further, C. neoformans was detected in the entirety of the upper respiratory tract and the ear canals of mice. In recent years, intranasal infection has become a popular mechanism to induce pulmonary infection because it avoids surgery, but our findings show that instillation of C. neoformans produces cryptococcal nasal infection. These findings imply that immunological studies using intranasal infection should assume that the initial sites of infection of infection are brain, lung, and upper respiratory tract, including the nasal airways.IMPORTANCE Cryptococcus neoformans causes an estimated 181, 000 deaths each year, mostly associated with untreated HIV/AIDS. C. neoformans has a ubiquitous worldwide distribution. Humans become infected from exposure to environmental sources, after which the fungus lays dormant within the human body. Upon AIDS-induced immunosuppression or therapy-induced immunosuppression (required for organ transplant recipients or those suffering from autoimmune disorders), cryptococcal disease reactivates and causes life-threatening meningitis and pneumonia. This study showed that upon contact with the host, C. neoformans can quickly (a few hours) reach the host brain and also colonizes the nose of infected animals. Therefore, this work paves the way to better knowledge of how C. neoformans travels through the host body. Understanding how C. neoformans infects, disseminates, and survives within the host is critically required so that we can prevent infections and the disease caused by this deadly fungus.

2.
MBio ; 10(4)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337723

RESUMO

The most enigmatic aspect of the rise of Candida auris as a human pathogen is that it emerged simultaneously on three continents, with each clade being genetically distinct. Although new pathogenic fungal species are described regularly, these are mostly species associated with single cases in individuals who are immunosuppressed. In this study, we used phylogenetic analysis to compare the temperature susceptibility of C. auris with those of its close relatives and to use these results to argue that it may be the first example of a new fungal disease emerging from climate change, with the caveat that many other factors may have contributed.

3.
Curr Top Microbiol Immunol ; 422: 1-30, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31278515

RESUMO

Melanins are a class of pigments that are ubiquitous throughout biology. They play incredibly diverse and important roles ranging from radiation protection to immune defense, camouflage, and virulence. Fungi have evolved to use melanin to be able to persist in the environment and within organisms. Fungal melanins are often located within the cell well and are able to neutralize reactive oxygen species and other radicals, defend against UV radiation, bind and sequester non-specific peptides and compounds, and produce a physical barrier that defends the cell. For this reason, melanized fungi are often well-suited to be human pathogens-melanin allows fungi to neutralize the microbicidal oxidative bursts of our innate immune system, bind and inactivate to antimicrobial peptides and enzymes, sequester antifungal pharmaceuticals, and create a shield to block immune recognition of the fungus. Due to the importance and pervasiveness of melanin in fungal virulence, mammalian immune systems have evolved antifungal strategies that involve directly detecting and binding to fungal melanins. Such strategies include the use of melanin-specific antibody responses and C-type lectins like the newly discovered melanin-specific MelLec receptor.


Assuntos
Fungos/metabolismo , Fungos/patogenicidade , Melaninas/metabolismo , Animais , Fungos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Lectinas Tipo C/metabolismo , Melaninas/imunologia , Virulência
4.
PLoS Pathog ; 15(7): e1007945, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31356623

RESUMO

Metabolically quiescent pathogens can persist in a viable non-replicating state for months or even years. For certain infectious diseases, such as tuberculosis, cryptococcosis, histoplasmosis, latent infection is a corollary of this dormant state, which has the risk for reactivation and clinical disease. During murine cryptococcosis and macrophage uptake, stress and host immunity induce Cryptococcus neoformans heterogeneity with the generation of a sub-population of yeasts that manifests a phenotype compatible with dormancy (low stress response, latency of growth). In this subpopulation, mitochondrial transcriptional activity is regulated and this phenotype has been considered as a hallmark of quiescence in stem cells. Based on these findings, we worked to reproduce this phenotype in vitro and then standardize the experimental conditions to consistently generate this dormancy in C. neoformans. We found that incubation of stationary phase yeasts (STAT) in nutriment limited conditions and hypoxia for 8 days (8D-HYPOx) was able to produced cells that mimic the phenotype obtained in vivo. In these conditions, mortality and/or apoptosis occurred in less than 5% of the yeasts compared to 30-40% of apoptotic or dead yeasts upon incubation in normoxia (8D-NORMOx). Yeasts in 8D-HYPOx harbored a lower stress response, delayed growth and less that 1% of culturability on agar plates, suggesting that these yeasts are viable but non culturable cells (VBNC). These VBNC were able to reactivate in the presence of pantothenic acid, a vitamin that is known to be involved in quorum sensing and a precursor of acetyl-CoA. Global metabolism of 8D-HYPOx cells showed some specific requirements and was globally shut down compared to 8D-NORMOx and STAT conditions. Mitochondrial analyses showed that the mitochondrial mass increased with mitochondria mostly depolarized in 8D-HYPOx compared to 8D-NORMox, with increased expression of mitochondrial genes. Proteomic and transcriptomic analyses of 8D-HYPOx revealed that the number of secreted proteins and transcripts detected also decreased compared to 8D-NORMOx and STAT, and the proteome, secretome and transcriptome harbored specific profiles that are engaged as soon as four days of incubation. Importantly, acetyl-CoA and the fatty acid pathway involving mitochondria are required for the generation and viability maintenance of VBNC. Altogether, these data show that we were able to generate for the first time VBNC phenotype in C. neoformans. This VBNC state is associated with a specific metabolism that should be further studied to understand dormancy/quiescence in this yeast.

5.
Biochem Soc Trans ; 47(4): 1005-1012, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31320501

RESUMO

It is now over 30 years since the discovery of extracellular vesicles (EVs) in Gram-negative bacteria. However, for cell-walled microbes such as fungi, mycobacteria and Gram-positive bacteria it was thought that EV release would be impossible, since such structures were not believed to cross the thick cell wall. This notion was disproven 10 years ago with the discovery of EVs in fungi, mycobacteria, and gram-positive bacteria. Today, EVs have been described in practically every species tested, ranging from Fungi through Bacteria and Archaea, suggesting that EVs are a feature of every living cell. However, there continues to be skepticism in some quarters regarding EV release and their biological significance. In this review, we list doubts that have been verbalized to us and provide answers to counter them. In our opinion, there is no doubt as to existence and physiological function of EVs and we take this opportunity to highlight the most pressing topics in our understanding of the biological processes underlying these structures.

6.
MBio ; 10(3)2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164465

RESUMO

This essay is written from the vantage point of the microbial world. While the focus of much thought in the microbial pathogenesis and infectious diseases fields has been on the impact of host-microbe interaction on the host, here we ask questions about what happens to the microbe. What are the costs and benefits for microbes of having the capacity for virulence? Our exploration of this topic leads us to conclude that virulence confers very few benefits for microbes, unless disease is necessary for microbial survival through host-to-host spread. In fact, the capacity for virulence is often fraught with risk for microbes, including host dependence and the threat of extinction. The costs of virulence may explain why, relative to their enormous numbers in nature, very few microbes are actually associated with human and animal disease.

7.
Cell Microbiol ; 21(10): e13066, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31173452

RESUMO

Free-living amoebae (FLAs) are major reservoirs for a variety of bacteria, viruses, and fungi. The most studied mycophagic FLA, Acanthamoeba castellanii (Ac), is a potential environmental host for endemic fungal pathogens such as Cryptococcus spp., Histoplasma capsulatum, Blastomyces dermatitides, and Sporothrix schenckii. However, the mechanisms involved in this interaction are poorly understood. The aim of this work was to characterize the molecular instances that enable Ac to interact with and ingest fungal pathogens, a process that could lead to selection and maintenance of possible virulence factors. The interaction of Ac with a variety of fungal pathogens was analysed in a multifactorial evaluation that included the role of multiplicity of infection over time. Fungal binding to Ac surface by living image consisted of a quick process, and fungal initial extrusion (vomocytosis) was detected from 15 to 80 min depending on the organism. When these fungi were cocultured with the amoeba, only Candida albicans and Cryptococcus neoformans were able to grow, whereas Paracoccidioides brasiliensis and Sporothrix brasiliensis displayed unchanged viability. Yeasts of H. capsulatum and Saccharomyces cerevisiae were rapidly killed by Ac; however, some cells remained viable after 48 hr. To evaluate changes in fungal virulence upon cocultivation with Ac, recovered yeasts were used to infect Galleria mellonella, and in all instances, they killed the larvae faster than control yeasts. Surface biotinylated extracts of Ac exhibited intense fungal binding by FACS and fluorescence microscopy. Binding was also intense to mannose, and mass spectrometry identified Ac proteins with affinity to fungal surfaces including two putative transmembrane mannose-binding proteins (MBP, L8WXW7 and MBP1, Q6J288). Consistent with interactions with such mannose-binding proteins, Ac-fungi interactions were inhibited by mannose. These MBPs may be involved in fungal recognition by amoeba and promotes interactions that allow the emergence and maintenance of fungal virulence for animals.

8.
Artigo em Inglês | MEDLINE | ID: mdl-31119433

RESUMO

The fungal kingdom poses major catastrophic threats to humanity but these are often unappreciated and minimized, in biological threat assessments. The causes for this blind spot are complex and include the remarkable natural resistance of humans to pathogenic fungi, the lack of contagiousness of human fungal diseases, and the indirectness of fungal threats, which are more likely to mediate their destructive effects on crops and ecosystems. A review of historical events reveals that the fungal kingdom includes major threats to humanity through their effects on human health, agriculture, and destruction of materiel. A major concern going forward is the likelihood that physiological adaptations by fungal species to global warming will bring new fungal threats. Fungal threats pose significant challenges specific to this group of organisms including the potential for intercontinental spread by air currents, capacity for rapid evolution, a paucity of effective drugs, the absence of vaccines, and increasing drug resistance. Preparedness against bio-catastrophic risks must include consideration of the threats posed by fungi, which in turn requires a greater investment in mycology-related research.

9.
Microbiology ; 165(8): 852-862, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31140968

RESUMO

Annexins are multifunctional proteins that bind to phospholipid membranes in a calcium-dependent manner. Annexins play a myriad of critical and well-characterized roles in mammals, ranging from membrane repair to vesicular secretion. The role of annexins in the kingdoms of bacteria, protozoa and fungi have been largely overlooked. The fact that there is no known homologue of annexins in the yeast model organism Saccharomyces cerevisiae may contribute to this gap in knowledge. However, annexins are found in most medically important fungal pathogens, with the notable exception of Candida albicans. In this study we evaluated the function of the one annexin gene in Cryptococcus neoformans, a causative agent of cryptococcosis. This gene CNAG_02415, is annotated in the C. neoformans genome as a target of calcineurin through its transcription factor Crz1, and we propose to update its name to cryptococcal annexin, AnnexinC1. C. neoformans strains deleted for AnnexinC1 revealed no difference in survival after exposure to various chemical stressors relative to wild-type strain, as well as no major alteration in virulence or mating. The only alteration observed in strains deleted for AnnexinC1 was a small increase in the titan cells' formation in vitro. The preservation of annexins in many different fungal species suggests an important function, and therefore the lack of a strong phenotype for annexin-deficient C. neoformans indicates either the presence of redundant genes that can compensate for the absence of AnnexinC1 function or novel functions not revealed by standard assays of cell function and pathogenicity.

10.
J Biol Chem ; 294(27): 10471-10489, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31118223

RESUMO

Melanins are synthesized macromolecules that are found in all biological kingdoms. These pigments have a myriad of roles that range from microbial virulence to key components of the innate immune response in invertebrates. Melanins also exhibit unique properties with potential applications in physics and material sciences, ranging from electrical batteries to novel therapeutics. In the fungi, melanins, such as eumelanins, are components of the cell wall that provide protection against biotic and abiotic elements. Elucidation of the smallest fungal cell wall-associated melanin unit that serves as a building block is critical to understand the architecture of these polymers, its interaction with surrounding components, and their functional versatility. In this study, we used isopycnic gradient sedimentation, NMR, EPR, high-resolution microscopy, and proteomics to analyze the melanin in the cell wall of the human pathogenic fungus Cryptococcus neoformans We observed that melanin is assembled into the cryptococcal cell wall in spherical structures ∼200 nm in diameter, termed melanin granules, which are in turn composed of nanospheres ∼30 nm in diameter, termed fungal melanosomes. We noted that melanin granules are closely associated with proteins that may play critical roles in the fungal melanogenesis and the supramolecular structure of this polymer. Using this structural information, we propose a model for C. neoformans' melanization that is similar to the process used in animal melanization and is consistent with the phylogenetic relatedness of the fungal and animal kingdoms.

11.
mSphere ; 4(2)2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-31019001

RESUMO

The thermodimorphic pathogenic fungi Paracoccidioides brasiliensis and Paracoccidioides lutzii are the etiologic causes of paracoccidioidomycosis (PCM), the most prevalent systemic mycosis in Latin America. Galectin-3 (Gal-3), an animal ß-galactoside-binding protein, modulates important roles during microbial infections, such as triggering a Th2-polarized immune response in PCM. Herein, we demonstrate that Gal-3 also plays other important roles in P. brasiliensis infection. We verified that Gal-3 levels are upregulated in human and mice infections and established that Gal-3 inhibited P. brasiliensis growth by inhibiting budding. Furthermore, Gal-3 affected disruption and internalization of extracellular vesicles (EVs) from P. brasiliensis by macrophages. Our results suggest important protective roles for Gal-3 in P. brasiliensis infection, indicating that increased Gal-3 production during P. brasiliensis infection may affect fungal growth and EV stability, thus promoting beneficial effects that could influence the course of PCM. The finding that Gal-3 has effects against P. brasiliensis together with previously reported effects against Cryptococcus neoformans suggests that molecule has a general antifungal role in innate defenses against fungal pathogens.IMPORTANCE Paracoccidioidomycosis (PCM) is the most prevalent systemic mycosis in Latin America. Although the immune mechanisms to control PCM are still not fully understood, several events of the host innate and adaptive immunity are crucial to determine the progress of the infection. Mammalian ß-galactoside-binding protein galectin-3 (Gal-3) plays significant roles during microbial infections and has been studied for its immunomodulatory roles, but it can also have direct antimicrobial effects. We asked whether this protein plays a role in Paracoccidioides brasiliensis We report herein that Gal-3 indeed has direct effects on the fungal pathogen, inhibiting fungal growth and reducing extracellular vesicle stability. Our results suggest a direct role for Gal-3 in P. brasiliensis infection, with beneficial effects for the mammalian host.


Assuntos
Galectina 3/genética , Paracoccidioides/crescimento & desenvolvimento , Paracoccidioidomicose/imunologia , Animais , Antifúngicos , Modelos Animais de Doenças , Vesículas Extracelulares , Galectina 3/imunologia , Humanos , Imunidade Inata , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Viabilidade Microbiana , Regulação para Cima
13.
J Clin Invest ; 129(6): 2167-2168, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31033485

RESUMO

Reflecting an increasing emphasis on collaborative science, the number of authors on published articles has markedly risen with time. With this trend, we see an increase in papers designating 2 or more co-first authors. To improve transparency in how such designations are made and reduce bias in the assignment of order, the JCI is now requiring an explanation for how the first-author position is determined when shared among contributing authors.

14.
mSphere ; 4(2)2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30918063

RESUMO

Changes in serum glycans discriminate between disease statuses in cancer. A similar connection has not been established in the context of infectious diseases such as tuberculosis (TB). The inflammation arising from infection by Mycobacterium tuberculosis may affect host protein glycosylation, thereby providing information about disease status in TB. A mouse model of infection was used to study glycoprotein N-glycosylation in serum. Following digestion of serum glycoproteins with peptide-N-glycosidase F (PNGase F), released glycans were permethylated and analyzed by multidimensional mass spectrometry (MS). Conditions included naive or Mycobacterium bovis BCG-vaccinated animals, which were either uninfected or infected with M. tuberculosis MS results were validated by lectin blotting. We found that both glycoprotein fucosylation and sialylation were particularly sensitive to M. tuberculosis infection. We observed that M. tuberculosis infection elevates serum IgM levels and induces changes in glycosylation that could inform about the disease.IMPORTANCE We demonstrate that M. tuberculosis infection influenced host protein glycosylation in a mouse model. The mechanism by which infection modifies glycans in serum proteins is not understood. Investigation of the regulation of such modifications by M. tuberculosis opens a new field that could lead to the discovery of novel biomarkers. Validation of such findings in human samples will reveal the clinical relevance of these findings.


Assuntos
Anticorpos Antibacterianos/sangue , Imunoglobulina M/química , Polissacarídeos/sangue , Tuberculose/imunologia , Animais , Vacina BCG/imunologia , Modelos Animais de Doenças , Feminino , Glicoproteínas/sangue , Glicoproteínas/química , Glicosilação , Imunoglobulina M/sangue , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis , Tuberculose/sangue , Vacinação
15.
J Immunol ; 202(9): 2782-2794, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30894426

RESUMO

Abs exert several of their effector functions by binding to cell surface receptors. For murine IgG3 (mIgG3), the identity of its receptors (and the very existence of a receptor) is still under debate, as not all mIgG3 functions can be explained by interaction with FcγRI. This implies the existence of an alternate receptor, whose identity we sought to pinpoint. We found that blockage of integrin ß1 selectively hampered binding of mIgG3 to macrophages and mIgG3-mediated phagocytosis. Manganese, an integrin activator, increased mIgG3 binding to macrophages. Blockage of FcγRI or Itgb1 inhibited binding of different mIgG3 Abs to variable extents. Our results are consistent with the notion that Itgb1 functions as part of an IgG receptor complex. Given the more ancient origin of integrins in comparison with FcγR, this observation could have far-ranging implications for our understanding of the evolution of Ab-mediated immunity as well as in immunity to microorganisms, pathogenesis of autoimmune diseases, and Ab engineering.

16.
J Immunol ; 202(9): 2661-2670, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30877168

RESUMO

Cryptococcus neoformans is a pathogenic yeast capable of a unique and intriguing form of cell-to-cell transfer between macrophage cells. The mechanism for cell-to-cell transfer is not understood. In this study, we imaged mouse macrophages with CellTracker Green 5-chloromethylfluorescein diacetate-labeled cytosol to ascertain whether cytosol was shared between donor and acceptor macrophages. Analysis of several transfer events detected no transfer of cytosol from donor-to-acceptor mouse macrophages. However, blocking Fc and complement receptors resulted in a major diminution of cell-to-cell transfer events. The timing of cell-to-cell transfer (11.17 min) closely approximated the sum of phagocytosis (4.18 min) and exocytosis (6.71 min) times. We propose that macrophage cell-to-cell transfer represents a nonlytic exocytosis event, followed by phagocytosis into a macrophage that is in close proximity, and name this process Dragotcytosis ("Dragot" is a Greek surname meaning "sentinel"), as it represents sharing of a microbe between two sentinel cells of the innate immune system.

17.
J Clin Invest ; 129(5): 1805-1807, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30907748

RESUMO

Recent reports suggest that there has been an increase in the number of retractions and corrections of published articles due to post-publication detection of problematic data. Moreover, fraudulent data and sloppy science have long-term effects on the scientific literature and subsequent projects based on false and unreproducible claims. At the JCI, we have introduced several data screening checks for manuscripts prior to acceptance in an attempt to reduce the number of post-publication corrections and retractions, with the ultimate goal of increasing confidence in the papers we publish.

18.
Elife ; 82019 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-30698140

RESUMO

We analyzed 2898 scientific papers published between 1995 and 2017 in which two or more authors shared the first author position. For papers in which the first and second authors made equal contributions, mixed-gender combinations were most frequent, followed by male-male and then female-female author combinations. For mixed-gender combinations, more male authors were in the first position, although the disparity decreased over time. For papers in which three or more authors made equal contributions, there were more male authors than female authors in the first position and more all-male than all-female author combinations. The gender inequalities observed among authors who made equal contributions are not consistent with random or alphabetical ordering of authors. These results raise concerns about female authors not receiving proper credit for publications and suggest a need for journals to request clarity on the method used to decide author order among those who contributed equally.

19.
J Biol Chem ; 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30504226

RESUMO

Outer membrane vesicles produced by Gram-negative bacteria have been studied for half a century but the possibility that Gram-positive bacteria secreted extracellular vesicles (EVs) was not pursued until recently due to the assumption that the thick peptidoglycan cell wall would prevent their release to the environment. However, following their discovery in fungi, which also have cell walls, EVs have now been described for a variety of Gram-positive bacteria. EVs purified from Gram-positive bacteria are implicated in virulence, toxin release and transference to host cells, eliciting immune responses, and spread of antibiotic resistance. Listeria monocytogenes is a Gram-positive bacterium that causes listeriosis.  Here we report that L. monocytogenes produces EVs with diameter ranging from 20-200 nm, containing the pore-forming toxin listeriolysin O (LLO) and phosphatidylinositol-specific phospholipase C (PI-PLC). Cell-free EV preparations were toxic to mammalian cells, the murine macrophage cell line J774.16, in a LLO-dependent manner, evidencing EV biological activity. The deletion of plcA increased EV toxicity, suggesting PI-PLC reduced LLO activity. Using simultaneous metabolite, protein, and lipid extraction (MPLEx) multi-omics we characterized protein, lipid and metabolite composition of bacterial cells and secreted EVs and found that EVs carry the majority of listerial virulence proteins.  Using immunogold electron microscopy we detected LLO at several organelles within infected human epithelial cells and with high-resolution fluorescence imaging we show that dynamic lipid structures are released from L. monocytogenes during infection. Our findings demonstrate that L. monocytogenes uses EVs for toxin release and implicate these structures in mammalian cytotoxicity.

20.
Pathog Immun ; 3(2): 183-196, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30465032

RESUMO

Fungal diseases became a major medical problem in the second half of the 20th century when advances in modern medicine together with the HIV epidemic resulted in large numbers of individuals with impaired immunity. Fungal diseases are difficult to manage because they tend to be chronic, hard to diagnose, and difficult to eradicate with antifungal drugs. This essay considers the future of medical mycology in the 21st century, extrapolating from current trends. In the near horizon, the prevalence of fungal diseases is likely to increase, as there will be more hosts with impaired immunity and drug resistance will inevitably increase after selection by antifungal drug use. We can expect progress in the development of new drugs, diagnostics, vaccines, and immunotherapies. In the far horizon, humanity may face new fungal diseases in association with climate change. Some current associations between chronic diseases and fungal infections could lead to the establishment of fungi as causative agents, which will greatly enhance their medical importance. All trends suggest that the importance of fungal diseases will increase in the 21st century, and enhanced human preparedness for this scourge will require more research investment in this group of infectious diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA