Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 592
Filtrar
1.
J Immunol ; 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33229441

RESUMO

High-dimensional cytometry is a powerful technique for deciphering the immunopathological factors common to multiple individuals. However, rational comparisons of multiple batches of experiments performed on different occasions or at different sites are challenging because of batch effects. In this study, we describe the integration of multibatch cytometry datasets (iMUBAC), a flexible, scalable, and robust computational framework for unsupervised cell-type identification across multiple batches of high-dimensional cytometry datasets, even without technical replicates. After overlaying cells from multiple healthy controls across batches, iMUBAC learns batch-specific cell-type classification boundaries and identifies aberrant immunophenotypes in patient samples from multiple batches in a unified manner. We illustrate unbiased and streamlined immunophenotyping using both public and in-house mass cytometry and spectral flow cytometry datasets. The method is available as the R package iMUBAC (https://github.com/casanova-lab/iMUBAC).

2.
J Exp Med ; 217(11)2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33057576

RESUMO

The advance of science is dependent upon collaboration, which does not have a visa attached to it. Indeed, over 40% of all American-based Nobel Prize winners are immigrants, and data from the National Science Foundation show that 49% of postdocs and 29% of science and engineering faculty in the US are foreign-born. However, restrictive new immigration policies in the US have left many scientists deeply concerned about their future and many American-based laboratories worried about attracting the best talent. At JEM, we're celebrating immigration by sharing the experiences of immigrant and nonimmigrant scientists on our editorial board. Alexander Rudensky and Jean-Laurent Casanova give their firsthand perspective on immigrating to the US, while Jedd Wolchok, Carl Nathan, David Holtzman, Susan Kaech, Lewis Lanier, and David Tuveson reflect on how immigration has affected their laboratories.

3.
J Clin Immunol ; 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33083971

RESUMO

IRAK4 deficiency is an inborn error of immunity predisposing patients to invasive pyogenic infections. Currently, there is no established simple assay that enables precise characterization of IRAK4 mutant alleles in isolation. Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is an autoimmune condition that is characterized by psychiatric symptoms, involuntary movement, seizures, autonomic dysfunction, and central hypoventilation. It typically occurs in adult females associated with tumors. Only a few infantile cases with anti-NMDAR encephalitis have been so far reported. We identified a 10-month-old boy with IRAK4 deficiency presenting with anti-NMDAR encephalitis and human herpes virus 6 (HHV6) reactivation. The diagnosis of IRAK4 deficiency was confirmed by the identification of compound heterozygous mutations c.29_30delAT (p.Y10Cfs*9) and c.35G>C (p.R12P) in the IRAK4 gene, low levels of IRAK4 protein expression in peripheral blood, and defective fibroblastic cell responses to TLR and IL-1 (TIR) agonist. We established a novel NF-κB reporter assay using IRAK4-null HEK293T, which enabled the precise evaluation of IRAK4 mutations. Using this system, we confirmed that both novel mutations identified in the patient are deleterious. Our study provides a new simple and reliable method to analyze IRAK4 mutant alleles. It also suggests the possible link between inborn errors of immunity and early onset anti-NMDAR encephalitis.

4.
J Clin Immunol ; 40(8): 1156-1162, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32936395

RESUMO

Puumala hantavirus (PUUV) hemorrhagic fever with renal syndrome (HFRS) is common in Northern Europe; this infection is usually self-limited and severe complications are uncommon. PUUV and other hantaviruses, however, can rarely cause encephalitis. The pathogenesis of these rare and severe events is unknown. In this study, we explored the possibility that genetic defects in innate anti-viral immunity, as analogous to Toll-like receptor 3 (TLR3) mutations seen in HSV-1 encephalitis, may explain PUUV encephalitis. We completed exome sequencing of seven adult patients with encephalitis or encephalomyelitis during acute PUUV infection. We found heterozygosity for the TLR3 p.L742F novel variant in two of the seven unrelated patients (29%, p = 0.0195). TLR3-deficient P2.1 fibrosarcoma cell line and SV40-immortalized fibroblasts (SV40-fibroblasts) from patient skin expressing mutant or wild-type TLR3 were tested functionally. The TLR3 p.L742F allele displayed low poly(I:C)-stimulated cytokine induction when expressed in P2.1 cells. SV40-fibroblasts from three healthy controls produced increasing levels of IFN-λ and IL-6 after 24 h of stimulation with increasing concentrations of poly(I:C), whereas the production of the cytokines was impaired in TLR3 L742F/WT patient SV40-fibroblasts. Heterozygous TLR3 mutation may underlie not only HSV-1 encephalitis but also PUUV hantavirus encephalitis. Such possibility should be further explored in encephalitis caused by these and other hantaviruses.

5.
J Clin Invest ; 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32960813

RESUMO

Inborn errors of TLR3-dependent IFN-α/ß- and -λ-mediated immunity in the central nervous system (CNS) can underlie herpes simplex virus 1 (HSV-1) encephalitis (HSE). The respective contributions of IFN-α/ß and -λ are unknown. We report a child homozygous for a genomic deletion of the entire coding sequence and part of the 3'UTR of the last exon of IFNAR1, who died from HSE at the age of two years. An older cousin died following vaccination against measles, mumps and rubella at 12 months of age, and another 17-year-old cousin homozygous for the same variant has had other, less severe viral illnesses. The encoded IFNAR1 protein is expressed on the cell surface but is truncated and cannot interact with the tyrosine kinase TYK2. The patient's fibroblasts and EBV-B cells did not respond to IFN-α2b or IFN-ß, in terms of STAT1, STAT2 and STAT3 phosphorylation, or the genome-wide induction of IFN-stimulated genes. The patient's fibroblasts were susceptible to viruses, including HSV-1, even in the presence of exogenous IFN-α2b or IFN-ß. HSE is therefore a consequence of inherited complete IFNAR1 deficiency. This viral disease occurred in natural conditions, unlike those previously reported in other patients with IFNAR1 or IFNAR2 deficiency. This experiment of Nature indicates that IFN-α/ß are essential for anti-HSV-1 immunity in the CNS.

8.
Blood ; 136(9): 1018-1019, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32853377
9.
J Clin Immunol ; 40(8): 1065-1081, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32852681

RESUMO

Heterozygous gain-of-function (GOF) mutations in STAT1 in patients with chronic mucocutaneous candidiasis (CMC) and hypothyroidism were discovered in 2011. CMC is the recurrent or persistent mucocutaneous infection by Candida fungi, and hypothyroidism results from autoimmune thyroiditis. Patients with these diseases develop other infectious diseases, including viral, bacterial, and fungal diseases, and other autoimmune manifestations, including enterocolitis, immune cytopenia, endocrinopathies, and systemic lupus erythematosus. STAT1-GOF mutations are highly penetrant with a median age at onset of 1 year and often underlie an autosomal dominant trait. As many as 105 mutations at 72 residues, including 65 recurrent mutations, have already been reported in more than 400 patients worldwide. The GOF mechanism involves impaired dephosphorylation of STAT1 in the nucleus. Patient cells show enhanced STAT1-dependent responses to type I and II interferons (IFNs) and IL-27. This impairs Th17 cell development, which accounts for CMC. The pathogenesis of autoimmunity likely involves enhanced type I IFN responses, as in other type I interferonopathies. The pathogenesis of other infections, especially those caused by intramacrophagic bacteria and fungi, which are otherwise seen in patients with diminished type II IFN immunity, has remained mysterious. The cumulative survival rates of patients with and without severe disease (invasive infection, cancer, and/or symptomatic aneurysm) at 60 years of age are 31% and 87%, respectively. Severe autoimmunity also worsens the prognosis. The treatment of patients with STAT1-GOF mutations who suffer from severe infectious and autoimmune manifestations relies on hematopoietic stem cell transplantation and/or oral JAK inhibitors.

10.
J Clin Immunol ; 40(6): 872-882, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32602053

RESUMO

Mendelian susceptibility to mycobacterial diseases (MSMD) is a rare congenital condition characterized by a selective predisposition to infections caused by weakly virulent mycobacteria and other types of intra-macrophagic pathogens. The 16 genes associated with MSMD display a considerable level of allelic heterogeneity, accounting for 31 distinct disorders with variable clinical presentations and prognosis. Most of MSMD deficiencies are isolated, referred to as selective susceptibility to mycobacterial diseases. However, other deficiencies are syndromic MSMD, defined by the combination of the mycobacterial infection with another, equally common, infectious, specific phenotypes. Herein, we described a series of 32 Iranian MSMD cases identified with seven distinct types of molecular defects, all of which are involved in the interferon gamma (IFNγ) immunity, including interleukin IL-12 receptor-ß1 (IL-12Rß1) deficiency (fifteen cases), IL-12p40 deficiency (ten cases), and IL-23R deficiency (three cases), as well as IFNγ receptor 1 (IFNγR1) deficiency, IFNγ receptor 2 (IFNγR2) deficiency, interferon-stimulated gene 15 (ISG15) deficiency, and tyrosine kinase 2 (TYK2) deficiency each in one case. Since the first report of two MSMD patients in our center, we identified 30 other affected patients with similar clinical manifestations. As the number of reported Iranian cases with MSMD diagnosis has increased in recent years and according to the national vaccination protocol, all Iranian newborns receive BCG vaccination at birth, early diagnosis, and therapeutic intervention which are required for a better outcome and also prevention of similar birth defects. Therefore, we investigated the clinical and molecular features of these 32 patients. The current report also defined novel classes of pathological mutations, further expanding our knowledge of the MSMD molecular basis and associated clinical manifestations.

12.
Sci Immunol ; 5(49)2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651211

RESUMO

Molecular, cellular, and clinical studies of human inborn errors of immunity have revolutionized our understanding of their pathogenesis, considerably broadened their spectrum of immunological and clinical phenotypes, and enabled successful targeted therapeutic interventions. These studies have also been of great scientific merit, challenging a number of immunological notions initially established in inbred mice while revealing previously unrecognized mechanisms of host defense by leukocytes and other cells and of both innate and adaptive tolerance to self.

13.
Front Immunol ; 11: 1161, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32676075

RESUMO

Interferon-γ receptor 1 (IFNγR1) deficiency is one of the inborn errors of IFN-γ immunity underlying Mendelian Susceptibility to Mycobacterial Disease (MSMD). This molecular circuit plays a crucial role in regulating the interaction between dendritic cells (DCs) and T lymphocytes, thus affecting DCs activation, maturation, and priming of T cells involved in the immune response against intracellular pathogens. We studied a girl who developed at the age of 2.5 years a Mycobacterium avium infection characterized by disseminated necrotizing granulomatous lymphadenitis, and we compared her findings with other patients with the same genetic condition. The patient carried a heterozygous 818del4 mutation in the IFNGR1 gene responsible of autosomal dominant (AD) partial IFNγR1 deficiency. During the acute infection blood cells immunophenotyping showed a marked reduction in DCs counts, including both myeloid (mDCs) and plasmacytoid (pDCs) subsets, that reversed after successful prolonged antimicrobial therapy. Histology of her abdomen lymph node revealed a profound depletion of tissue pDCs, as compared to other age-matched granulomatous lymphadenitis of mycobacterial origin. Circulating DCs depletion was also observed in another patient with AD partial IFNγR1 deficiency during mycobacterial infection. To conclude, AD partial IFNγR1 deficiency can be associated with a transient decrease in both circulating and tissular DCs during acute mycobacterial infection, suggesting that DCs counts monitoring might constitute a useful marker of treatment response.

14.
Int Immunol ; 32(10): 663-671, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32603428

RESUMO

Autosomal recessive (AR) complete signal transducer and activator of transcription 1 (STAT1) deficiency is an extremely rare primary immunodeficiency that causes life-threatening mycobacterial and viral infections. Only seven patients from five unrelated families with this disorder have been so far reported. All causal STAT1 mutations reported are exonic and homozygous. We studied a patient with susceptibility to mycobacteria and virus infections, resulting in identification of AR complete STAT1 deficiency due to compound heterozygous mutations, both located in introns: c.128+2 T>G and c.542-8 A>G. Both mutations were the first intronic STAT1 mutations to cause AR complete STAT1 deficiency. Targeted RNA-seq documented the impairment of STAT1 mRNA expression and contributed to the identification of the intronic mutations. The patient's cells showed a lack of STAT1 expression and phosphorylation, and severe impairment of the cellular response to IFN-γ and IFN-α. The case reflects the importance of accurate clinical diagnosis and precise evaluation, to include intronic mutations, in the comprehensive genomic study when the patient lacks molecular pathogenesis. In conclusion, AR complete STAT1 deficiency can be caused by compound heterozygous and intronic mutations. Targeted RNA-seq-based systemic gene expression assay may help to increase diagnostic yield in inconclusive cases after comprehensive genomic study.

15.
Proc Natl Acad Sci U S A ; 117(32): 19367-19375, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32719112

RESUMO

Whole-exome sequencing (WES) has facilitated the discovery of genetic lesions underlying monogenic disorders. Incomplete penetrance and variable expressivity suggest a contribution of additional genetic lesions to clinical manifestations and outcome. Some monogenic disorders may therefore actually be digenic. However, only a few digenic disorders have been reported, all discovered by candidate gene approaches applied to at least one locus. We propose here a two-locus genome-wide test for detecting digenic inheritance in WES data. This approach uses the gene as the unit of analysis and tests all pairs of genes to detect pairwise gene × gene interactions underlying disease. It is a case-only method, which has several advantages over classic case-control tests, in particular by avoiding recruitment of controls. Our simulation studies based on real WES data identified two major sources of type I error inflation in this case-only test: linkage disequilibrium and population stratification. Both were corrected by specific procedures. Moreover, our case-only approach is more powerful than the corresponding case-control test for detecting digenic interactions in various population stratification scenarios. Finally, we confirmed the potential of our unbiased, genome-wide approach by successfully identifying a previously reported digenic lesion in patients with craniosynostosis. Our case-only test is a powerful and timely tool for detecting digenic inheritance in WES data from patients.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Herança Multifatorial , Sequenciamento Completo do Exoma/métodos , Craniossinostoses/genética , Epistasia Genética , Exoma/genética , Ligação Genética , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Modelos Genéticos
16.
BMJ ; 369: m2094, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: covidwho-505612

RESUMO

OBJECTIVES: To describe the characteristics of children and adolescents affected by an outbreak of Kawasaki-like multisystem inflammatory syndrome and to evaluate a potential temporal association with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. DESIGN: Prospective observational study. SETTING: General paediatric department of a university hospital in Paris, France. PARTICIPANTS: 21 children and adolescents (aged ≤18 years) with features of Kawasaki disease who were admitted to hospital between 27 April and 11 May 2020 and followed up until discharge by 15 May 2020. MAIN OUTCOME MEASURES: The primary outcomes were clinical and biological data, imaging and echocardiographic findings, treatment, and outcomes. Nasopharyngeal swabs were prospectively tested for SARS-CoV-2 using reverse transcription-polymerase chain reaction (RT-PCR) and blood samples were tested for IgG antibodies to the virus. RESULTS: 21 children and adolescents (median age 7.9 (range 3.7-16.6) years) were admitted with features of Kawasaki disease over a 15 day period, with 12 (57%) of African ancestry. 12 (57%) presented with Kawasaki disease shock syndrome and 16 (76%) with myocarditis. 17 (81%) required intensive care support. All 21 patients had noticeable gastrointestinal symptoms during the early stage of illness and high levels of inflammatory markers. 19 (90%) had evidence of recent SARS-CoV-2 infection (positive RT-PCR result in 8/21, positive IgG antibody detection in 19/21). All 21 patients received intravenous immunoglobulin and 10 (48%) also received corticosteroids. The clinical outcome was favourable in all patients. Moderate coronary artery dilations were detected in 5 (24%) of the patients during hospital stay. By 15 May 2020, after 8 (5-17) days of hospital stay, all patients were discharged home. CONCLUSIONS: The ongoing outbreak of Kawasaki-like multisystem inflammatory syndrome among children and adolescents in the Paris area might be related to SARS-CoV-2. In this study an unusually high proportion of the affected children and adolescents had gastrointestinal symptoms, Kawasaki disease shock syndrome, and were of African ancestry.


Assuntos
Anticorpos Antivirais/sangue , Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Síndrome de Resposta Inflamatória Sistêmica/epidemiologia , Adolescente , Corticosteroides/uso terapêutico , Betacoronavirus/genética , Betacoronavirus/imunologia , Criança , Pré-Escolar , Infecções por Coronavirus/complicações , Infecções por Coronavirus/imunologia , Feminino , Humanos , Imunoglobulinas Intravenosas/uso terapêutico , Masculino , Nasofaringe/virologia , Pandemias , Paris , Pneumonia Viral/complicações , Pneumonia Viral/imunologia , Estudos Prospectivos , RNA Viral/genética , Síndrome de Resposta Inflamatória Sistêmica/tratamento farmacológico , Síndrome de Resposta Inflamatória Sistêmica/etiologia
19.
Proc Natl Acad Sci U S A ; 117(24): 13626-13636, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32487729

RESUMO

Humans homozygous or hemizygous for variants predicted to cause a loss of function (LoF) of the corresponding protein do not necessarily present with overt clinical phenotypes. We report here 190 autosomal genes with 207 predicted LoF variants, for which the frequency of homozygous individuals exceeds 1% in at least one human population from five major ancestry groups. No such genes were identified on the X and Y chromosomes. Manual curation revealed that 28 variants (15%) had been misannotated as LoF. Of the 179 remaining variants in 166 genes, only 11 alleles in 11 genes had previously been confirmed experimentally to be LoF. The set of 166 dispensable genes was enriched in olfactory receptor genes (41 genes). The 41 dispensable olfactory receptor genes displayed a relaxation of selective constraints similar to that observed for other olfactory receptor genes. The 125 dispensable nonolfactory receptor genes also displayed a relaxation of selective constraints consistent with greater redundancy. Sixty-two of these 125 genes were found to be dispensable in at least three human populations, suggesting possible evolution toward pseudogenes. Of the 179 LoF variants, 68 could be tested for two neutrality statistics, and 8 displayed robust signals of positive selection. These latter variants included a known FUT2 variant that confers resistance to intestinal viruses, and an APOL3 variant involved in resistance to parasitic infections. Overall, the identification of 166 genes for which a sizeable proportion of humans are homozygous for predicted LoF alleles reveals both redundancies and advantages of such deficiencies for human survival.


Assuntos
Genética Humana , Mutação com Perda de Função , Alelos , Apolipoproteínas L/genética , Fucosiltransferases/genética , Variação Genética , Homozigoto , Humanos , Proteínas/genética , Cromossomos Sexuais/genética
20.
Med Mycol ; 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32526033

RESUMO

Candidiasis is characterized by susceptibility to recurrent or persistent infections caused by Candida spp., typically Candida albicans, of cutaneous and mucosal surfaces. In this report, function and frequency of Th17 cells as well as genetics of patients susceptible to mucocutaneous candidiasis were studied. For patients, T-cell proliferation tests in response to Candida antigen, Th17 cell proportions, and STAT1 phosphorylation were evaluated through flow cytometry. Expression of IL17A, IL17F and IL22 genes were measured by real-time quantitative PCR. At the same time, whole exome sequencing was performed for all patients. We identified two heterozygous substitutions, one: c.821G > A (p. R274Q) was found in a multiplex family with three individuals affected, the second one: c.812A > C (p. Q271P) was found in a sporadic case. Both mutations are located in the coiled-coil domain (CCD) of STAT1. The frequency of Th17 cells, IL17A, IL17F, and IL22 gene expression in patients' peripheral blood mononuclear cells (PBMCs), and T-cell proliferation to Candida antigens were significantly reduced in the patients as compared to healthy controls. An increased STAT1 phosphorylation was observed in patients' PBMCs upon interferon (IFN)-γ stimulation as compared to healthy controls. We report two different but neighboring heterozygous mutations, located in exon 10 of the STAT1 gene, in four Iranian patients with CMC, one of whom also had hypothyroidism. These mutations were associated with impaired T cell proliferation to Candida antigen, low Th17 cell proportions, and increased STAT1 phosphorylation upon IFN-γ. We suggest that interfering with STAT1 phosphorylation might be a promising way for potential therapeutic measurements for such patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA