Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Assunto principal
Intervalo de ano de publicação
Plants (Basel) ; 10(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34834696


In the current context of climate change, plants need to develop different mechanisms of stress tolerance and adaptation to cope with changing environmental conditions. Temperature is one of the most important abiotic stresses that forest trees have to overcome. Recent research developed in our laboratory demonstrated that high temperatures during different stages of conifer somatic embryogenesis (SE) modify subsequent phases of the process and the behavior of the resulting ex vitro somatic plants. For this reason, Aleppo pine SE was induced under different heat stress treatments (40 °C for 4 h, 50 °C for 30 min, and 60 °C for 5 min) in order to analyze its effect on the global DNA methylation rates and the differential expression of four stress-related genes at different stages of the SE process. Results showed that a slight decrease of DNA methylation at proliferating embryonal masses (EMs) can correlate with the final efficiency of the process. Additionally, different expression patterns for stress-related genes were found in EMs and needles from the in vitro somatic plants obtained; the DEHYDRATION INDUCED PROTEIN 19 gene was up-regulated in response to heat at proliferating EMs, whereas HSP20 FAMILY PROTEIN and SUPEROXIDE DISMUTASE [Cu-Zn] were down-regulated in needles.

Front Plant Sci ; 12: 631239, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912202


Somatic embryogenesis is the process by which bipolar structures with no vascular connection with the surrounding tissue are formed from a single or a group of vegetative cells, and in conifers it can be divided into five different steps: initiation, proliferation, maturation, germination and acclimatization. Somatic embryogenesis has long been used as a model to study the mechanisms regulating stress response in plants, and recent research carried out in our laboratory has demonstrated that high temperatures during initial stages of conifer somatic embryogenesis modify subsequent phases of the process, as well as the behavior of the resulting plants ex vitro. The development of high-throughput techniques has facilitated the study of the molecular response of plants to numerous stress factors. Proteomics offers a reliable image of the cell status and is known to be extremely susceptible to environmental changes. In this study, the proteome of radiata pine somatic embryos was analyzed by LC-MS after the application of high temperatures during initiation of embryonal masses [(23°C, control; 40°C (4 h); 60°C (5 min)]. At the same time, the content of specific soluble sugars and sugar alcohols was analyzed by HPLC. Results confirmed a significant decrease in the initiation rate of embryonal masses under 40°C treatments (from 44 to 30.5%) and an increasing tendency in the production of somatic embryos (from 121.87 to 170.83 somatic embryos per gram of embryogenic tissue). Besides, heat provoked a long-term readjustment of the protein synthesis machinery: a great number of structural constituents of ribosomes were increased under high temperatures, together with the down-regulation of the enzyme methionine-tRNA ligase. Heat led to higher contents of heat shock proteins and chaperones, transmembrane transport proteins, proteins related with post-transcriptional regulation (ARGONAUTE 1D) and enzymes involved in the synthesis of fatty acids, specific compatible sugars (myo-inositol) and cell-wall carbohydrates. On the other hand, the protein adenosylhomocysteinase and enzymes linked with the glycolytic pathway, nitrogen assimilation and oxidative stress response were found at lower levels.

Tree Physiol ; 41(6): 912-926, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-32348507


Vegetative propagation through somatic embryogenesis is an effective method to produce elite varieties and can be applied as a tool to study the response of plants to different stresses. Several studies show that environmental changes during embryogenesis could determine future plant development. Moreover, we previously reported that physical and chemical conditions during somatic embryogenesis can determine the protein, hormone and metabolite profiles, as well as the micromorphological and ultrastructural organization of embryonal masses and somatic embryos. In this sense, phytohormones are key players throughout the somatic embryogenesis process as well as during numerous stress-adaptation responses. In this work, we first applied different high-temperature regimes (30 °C, 4 weeks; 40 °C, 4 days; 50 °C, 5 min) during induction of Pinus radiata D. Don somatic embryogenesis, together with control temperature (23 °C). Then, the somatic plants regenerated from initiated embryogenic cell lines and cultivated in greenhouse conditions were subjected to drought stress and control treatments to evaluate survival, growth and several physiological traits (relative water content, water potential, photosynthesis, stomatal conductance and transpiration). Based on those preliminary results, even more extreme high-temperature regimes were applied during induction (40 °C, 4 h; 50 °C, 30 min; 60 °C, 5 min) and the corresponding cytokinin profiles of initiated embryonal masses from different lines were analysed. The results showed that the temperature regime during induction had delayed negative effects on drought resilience of somatic plants as indicated by survival, photosynthetic activity and water- use efficiency. However, high temperatures for extended periods of time enhanced subsequent plant growth in well-watered conditions. High-temperature regime treatments induced significant differences in the profile of total cytokinin bases, N6-isopentenyladenine, cis-zeatin riboside and trans-zeatin riboside. We concluded that phytohormones could be potential regulators of stress-response processes during initial steps of somatic embryogenesis and that they may have delayed implications in further developmental processes, determining the performance of the generated plants.

Pinus , Citocininas , Secas , Reguladores de Crescimento de Plantas , Temperatura
Plants (Basel) ; 9(12)2020 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-33322106


Based on the hypothesis that embryo development is a crucial stage for the formation of stable epigenetic marks that could modulate the behaviour of the resulting plants, in this study, radiata pine somatic embryogenesis was induced at high temperatures (23 °C, eight weeks, control; 40 °C, 4 h; 60 °C, 5 min) and the global methylation and hydroxymethylation levels of emerging embryonal masses and somatic plants were analysed using LC-ESI-MS/ MS-MRM. In this context, the expression pattern of six genes previously described as stress-mediators was studied throughout the embryogenic process until plant level to assess whether the observed epigenetic changes could have provoked a sustained alteration of the transcriptome. Results indicated that the highest temperatures led to hypomethylation of both embryonal masses and somatic plants. Moreover, we detected for the first time in a pine species the presence of 5-hydroxymethylcytosine, and revealed its tissue specificity and potential involvement in heat-stress responses. Additionally, a heat shock protein-coding gene showed a down-regulation tendency along the process, with a special emphasis given to embryonal masses at first subculture and ex vitro somatic plants. Likewise, the transcripts of several proteins related with translation, oxidative stress response, and drought resilience were differentially expressed.

Front Plant Sci ; 9: 2004, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30705684


Climate change will inevitably lead to environmental variations, thus plant drought tolerance will be a determinant factor in the success of plantations and natural forestry recovery. Some metabolites, such as soluble carbohydrates and amino acids, have been described as being the key to both embryogenesis efficiency and abiotic stress response, contributing to phenotypic plasticity and the adaptive capacity of plants. For this reason, our main objectives were to evaluate if the temperature during embryonal mass initiation in radiata pine was critical to the success of somatic embryogenesis, to alter the morphological and ultrastructural organization of embryonal masses at cellular level and to modify the carbohydrate, protein, or amino acid contents. The first SE initiation experiments were carried out at moderate and high temperatures for periods of different durations prior to transfer to the control temperature of 23°C. Cultures initiated at moderate temperatures (30°C, 4 weeks and 40°C, 4 days) showed significantly lower initiation and proliferation rates than those at the control temperature or pulse treatment at high temperatures (50°C, 5 min). No significant differences were observed either for the percentage of embryogenic cell lines that produced somatic embryos, or for the number of somatic embryos per gram of embryonal mass. Based on the results from the first experiments, initiation was carried out at 40°C 4 h; 50°C, 30 min; and a pulse treatment of 60°C, 5 min. No significant differences were found for the initiation or number of established lines or for the maturation of somatic embryos. However, large morphological differences were observed in the mature somatic embryos. At the same time, changes observed at cellular level suggested that strong heat shock treatments may trigger the programmed cell death of embryogenic cells, leading to an early loss of embryogenic potential, and the formation of supernumerary suspensor cells. Finally, among all the differences observed in the metabolic profile, it is worth highlighting the accumulation of tyrosine and isoleucine, both amino acids involved in the synthesis of abiotic stress response-related secondary metabolites.