Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(15)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34360675

RESUMO

In recent decades, interest in natural compounds has increased exponentially due to their numerous beneficial properties in the treatment of various acute and chronic diseases. A group of plant derivatives with great scientific interest is terpenic compounds. Among the plants richest in terpenes, the genus Ferula L. is one of the most representative, and ferutinin, the most common sesquiterpene, is extracted from the leaves, rhizome, and roots of this plant. As reported in the scientific literature, ferutinin possesses antioxidant and anti-inflammatory properties, as well as valuable estrogenic properties. Neurodegenerative and demyelinating diseases are devastating conditions for which a definite cure has not yet been established. The mechanisms involved in these diseases are still poorly understood, and oxidative stress is considered to be both a key modulator and a common denominator. In the proposed experimental system, co-cultured human neurons (SH-SY5Y) and human oligodendrocytes (MO3.13) were treated with the pro-inflammatory agent lipopolysaccharide at a concentration of 1 µg/mL for 24 h or pretreated with ferutinin (33 nM) for 24 h and subsequently exposed to lipopolysaccharide 1 µg/mL for 24 h. Further studies would, however, be needed to establish whether this natural compound can be used as a support strategy in pathologies characterized by progressive inflammation and oxidative stress phenomena.


Assuntos
Benzoatos/farmacologia , Cicloeptanos/farmacologia , Inflamação/tratamento farmacológico , Lipopolissacarídeos/toxicidade , Neurônios/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Estresse Oxidativo , Sesquiterpenos/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Linhagem Celular , Técnicas de Cocultura , Escherichia coli , Humanos , Inflamação/induzido quimicamente , Neurônios/metabolismo , Neurônios/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Substâncias Protetoras/farmacologia
2.
Nutrients ; 13(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201904

RESUMO

Doxorubicin is an anthracycline that is commonly used as a chemotherapy drug due to its cytotoxic effects. The clinical use of doxorubicin is limited due to its known cardiotoxic effects. Treatment with anthracyclines causes heart failure in 15-17% of patients, resulting in mitochondrial dysfunction, the accumulation of reactive oxygen species, intracellular calcium dysregulation, the deterioration of the cardiomyocyte structure, and apoptotic cell death. Polyphenols have a wide range of beneficial properties, and particular importance is given to Bergamot Polyphenolic Fraction; Oleuropein, one of the main polyphenolic compounds of olive oil; and Cynara cardunculus extract. These natural compounds have particular beneficial characteristics, owing to their high polyphenol contents. Among these, their antioxidant and antoproliferative properties are the most important. The aim of this paper was to investigate the effects of these three plant derivatives using an in vitro model of cardiotoxicity induced by the treatment of rat embryonic cardiomyoblasts (H9c2) with doxorubicin. The biological mechanisms involved and the crosstalk existing between the mitochondria and the endoplasmic reticulum were examined. Bergamot Polyphenolic Fraction, Oleuropein, and Cynara cardunculus extract were able to decrease the damage induced by exposure to doxorubicin. In particular, these natural compounds were found to reduce cell mortality and oxidative damage, increase the lipid content, and decrease the concentration of calcium ions that escaped from the endoplasmic reticulum. In addition, the direct involvement of this cellular organelle was demonstrated by silencing the ATF6 arm of the Unfolded Protein Response, which was activated after treatment with doxorubicin.


Assuntos
Cardiotoxicidade/tratamento farmacológico , Cynara/química , Doxorrubicina/efeitos adversos , Olea/química , Extratos Vegetais/farmacologia , Animais , Antraciclinas , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Suplementos Nutricionais , Glucosídeos Iridoides , Mitocôndrias , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo , Polifenóis/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo
3.
Biomedicines ; 8(9)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854210

RESUMO

Polyunsaturated fatty acids (n-3 PUFAs) are long-chain polyunsaturated fatty acids with 18, 20 or 22 carbon atoms, which have been found able to counteract cardiovascular diseases. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in particular, have been found to produce both vaso- and cardio-protective response via modulation of membrane phospholipids thereby improving cardiac mitochondrial functions and energy production. However, antioxidant properties of n-3 PUFAs, along with their anti-inflammatory effect in both blood vessels and cardiac cells, seem to exert beneficial effects in cardiovascular impairment. In fact, dietary supplementation with n-3 PUFAs has been demonstrated to reduce oxidative stress-related mitochondrial dysfunction and endothelial cell apoptosis, an effect occurring via an increased activity of endogenous antioxidant enzymes. On the other hand, n-3 PUFAs have been shown to counteract the release of pro-inflammatory cytokines in both vascular tissues and in the myocardium, thereby restoring vascular reactivity and myocardial performance. Here we summarize the molecular mechanisms underlying the anti-oxidant and anti-inflammatory effect of n-3 PUFAs in vascular and cardiac tissues and their implication in the prevention and treatment of cardiovascular disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...