Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Infect Genet Evol ; 96: 105163, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34848354

RESUMO

An in-depth knowledge of the molecular evolution of the peste des petits ruminants virus (PPRV) is critical for the success of the current global eradication program. For this reason, a molecular evolutionary analysis of PPRVs circulating in Bangladesh over a decade (2008-2020) was performed. The complete genome sequencing of three PPRV isolates from 2008 (BD2), 2015 (BD12) and 2017 (BD17) as well as full length nucleocapsid (N), matrix (M) and fusion (F) gene sequencing of seven more samples from 2015 to 2020 was performed. Phylogenetic analysis classified all ten PPRVs from Bangladesh as members of lineage IV and showed that they were closely related to PPRV strains detected in China and Tibet during 2007-2008, and India during 2014-2018. Time scale Bayesian Maximum Clade Credibility (MCC) phylogenetic analysis of the three complete genomes revealed a mean Time to Most Recent Common Ancestor (TMRCA) of 2000. Comparative deduced amino acid residue analysis at various functional motifs of PPRVs related to virus structure and function, virulence and host adaptation, receptor binding sites and polymerase activity revealed conserved residues among the PPRVs from Bangladesh. In total sixteen epitopes were predicted from four immunogenic proteins i.e. N, M, F and haemagglutinin (H). Interestingly, the predicted epitopes from the N and M proteins shared conserved epitopes with two vaccine strains currently being used, indicating that the strains from Bangladesh could be potentially used as alternative local vaccines.

2.
Arch Virol ; 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34826000

RESUMO

Archival swine DNA samples from Indonesia and Mongolia, some of which were previously shown to be positive for African swine fever virus, were screened for the presence of porcine circovirus 2 (PCV-2) and porcine circovirus 3 (PCV-3) by PCR. Samples from both countries were positive for PCV-2 (three from Mongolia and two from Indonesia), while none were positive for PCV-3. The PCV-2 amplicons were sequenced, and phylogenetic analysis revealed that the PCV-2 strains belonged to four different genotypes: PCV-2a (Mongolia), PCV-2b (Mongolia and Indonesia), PCV-2d (Indonesia), and PCV-2g (Mongolia). This is the first report of ASFV/PCV-2 coinfection in pigs and the first report of the presence of PCV-2 in Mongolia.

3.
Pathogens ; 10(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34832558

RESUMO

For several years after its discovery, Porcine circovirus 2 (PCV-2) represented a major threat to the swine industry through economic losses due to the associated clinical syndromes, decreased production performances in both symptomatic and asymptomatic animals and disease management costs. Widespread vaccination administration has largely reduced the impact of this infection and represents the most effective control measure. The efficacy of vaccination is threatened by the emergence of novel (or uncommon) PCV-2 genotypes. In addition to domestic pigs, PCV-2 has been detected in several other species, a fact which could have an impact on new variant emergence and maintenance. Considering this, the present study assessed the distribution of the minor PCV-2c genotype in non-Suidae ungulates in Namibia. Red hartebeests (Alcelaphus buselaphus caama) (n = 44), kudus (Tragelaphus strepsiceros) (n = 10) and oryxes (Oryx gazella) (n = 54), whose mediastinal lymph nodes were sampled after slaughtering during the period 2019-2021, were included in the study. Two oryxes (3.7%; 95% CI = 0.45-12.75%) were PCV-2-positive by PCR. Complete genome sequence was obtained for the two samples identifying them as PCV-2c genotype. The sequences were identical and shared a high percentage of identity (~99.9%) with those recently obtained from warthogs living in the same area. The present study confirms the presence of the PCV-2c genotype (previously considered extinct) in Namibian wild animal populations and demonstrates greater than expected PCV-2 host plasticity. Because of the role these niches can have in the maintenance and evolution of minor PCV-2 genotypes, more extensive and dedicated studies should be performed to prepare authorities to promptly react to potential emerging threats from these viruses.

4.
Transbound Emerg Dis ; 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34812571

RESUMO

Porcine circovirus-2 (PCV-2) is associated with several disease syndromes in domestic pigs that have a significant impact on global pig production and health. Currently, little is known about the status of PCV-2 in Africa. In this study, a total of 408 archived DNA samples collected from pigs in Burkina Faso, Cameroon, Cape Verde, Ethiopia, the Democratic Republic of the Congo, Mozambique, Nigeria, Senegal, Tanzania and Zambia between 2000 and 2018 were screened by PCR for the presence of PCV-2. Positive amplicons of the gene encoding the viral capsid protein (ORF2) were sequenced to determine the genotypes circulating in each country. Four of the nine currently known genotypes of PCV-2 were identified (i.e. PCV-2a, PCV-2b, PCV-2d and PCV-2 g) with more than one genotype being identified in Burkina Faso, Ethiopia, Nigeria, Mozambique, Senegal and Zambia. Additionally, a phylogeographic analysis which included 38 additional ORF2 gene sequences of PCV-2s previously identified in Mozambique, Namibia and South Africa from 2014 to 2016 and 2019 to 2020 and available in public databases, demonstrated the existence of several African-specific clusters and estimated the approximate time of introduction of PCV-2s into Africa from other continents. This is the first in-depth study of PCV-2 in Africa and it has important implications for pig production at both the small-holder and commercial farm level on the continent.

5.
Vet Res Commun ; 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750750

RESUMO

Porcine circovirus 3 (PCV-3) has been associated with an assortment of clinical conditions in pigs and has been reported in many countries worldwide. In Africa there is no data on the presence of PCV-3. In this study, DNA samples collected from 91 pigs between 2011 and 2019 in nine of the ten provinces of Mozambique in the context of African swine fever (ASF) monitoring were further screened for the presence of PCV-3. Of these samples, 7 (7.5%) animals were positive for PCV-3. Sequence and phylogenetic analysis of the capsid protein gene (ORF2) of the PCV-3s provided evidence of epidemiological links with PCV-3s identified in North and South America, Asia, and Europe. This is the first identification of PCV-3 in Mozambique (and Africa) and the first evidence of co-infection of PCV-3 and ASF virus. It should provide a starting point for further investigations into the presence and impact of PCV-3 in Africa.

6.
J Wildl Dis ; 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34699593

RESUMO

In April 2020, two Whooper Swans (Cygnus cygnus) and one Swan Goose (Anser cygnoides) were found dead at three different locations in western Mongolia. Virus isolation from organs taken from the carcasses and full genome sequencing revealed that all three birds were positive for highly pathogenic H5N6 avian influenza virus (HPAIV) belonging to subclade 2.3.4.4h. Confirming similar reports from central Mongolia and western China, these findings have important implications for the monitoring, control, and management of HPAIVs in wild bird and commercial poultry populations in Mongolia.

7.
Virol J ; 18(1): 167, 2021 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-34391449

RESUMO

BACKGROUND: Poxviruses within the Capripoxvirus, Orthopoxvirus, and Parapoxvirus genera can infect livestock, with the two former having zoonotic importance. In addition, they induce similar clinical symptoms in common host species, creating a challenge for diagnosis. Although endemic in the country, poxvirus infections of small ruminants and cattle have received little attention in Botswana, with no prior use of molecular tools to diagnose and characterize the pathogens. METHODS: A high-resolution melting (HRM) assay was used to detect and differentiate poxviruses in skin biopsy and skin scab samples from four cattle, one sheep, and one goat. Molecular characterization of capripoxviruses and parapoxviruses was undertaken by sequence analysis of RPO30 and GPCR genes. RESULTS: The HRM assay revealed lumpy skin disease virus (LSDV) in three cattle samples, pseudocowpox virus (PCPV) in one cattle sample, and orf virus (ORFV) in one goat and one sheep sample. The phylogenetic analyses, based on the RPO30 and GPCR multiple sequence alignments showed that the LSDV sequences of Botswana were similar to common LSDV field isolates encountered in Africa, Asia, and Europe. The Botswana PCPV presented unique features and clustered between camel and cattle PCPV isolates. The Botswana ORFV sequence isolated from goat differed from the ORFV sequence isolated from sheep. CONCLUSIONS: This study is the first report on the genetic characterization of poxvirus diseases circulating in cattle, goats, and sheep in Botswana. It shows the importance of molecular methods to differentially diagnose poxvirus diseases of ruminants.

8.
Viruses ; 13(8)2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34452513

RESUMO

The recent emergence of SARS-CoV-2 in humans from a yet unidentified animal reservoir and the capacity of the virus to naturally infect pets, farmed animals and potentially wild animals has highlighted the need for serological surveillance tools. In this study, the luciferase immunoprecipitation systems (LIPS), employing the spike (S) and nucleocapsid proteins (N) of SARS-CoV-2, was used to examine the suitability of the assay for antibody detection in different animal species. Sera from SARS-CoV-2 naturally-infected mink (n = 77), SARS-CoV-2 experimentally-infected ferrets, fruit bats and hamsters and a rabbit vaccinated with a purified spike protein were examined for antibodies using the SARS-CoV-2 N and/or S proteins. From comparison with the known neutralization status of the serum samples, statistical analyses including calculation of the Spearman rank-order-correlation coefficient and Cohen's kappa agreement were used to interpret the antibody results and diagnostic performance. The LIPS immunoassay robustly detected the presence of viral antibodies in naturally infected SARS-CoV-2 mink, experimentally infected ferrets, fruit bats and hamsters as well as in an immunized rabbit. For the SARS-CoV-2-LIPS-S assay, there was a good level of discrimination between the positive and negative samples for each of the five species tested with 100% agreement with the virus neutralization results. In contrast, the SARS-CoV-2-LIPS-N assay did not consistently differentiate between SARS-CoV-2 positive and negative sera. This study demonstrates the suitability of the SARS-CoV-2-LIPS-S assay for the sero-surveillance of SARS-CoV-2 infection in a range of animal species.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/veterinária , Vison/imunologia , SARS-CoV-2/imunologia , Animais , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/imunologia , Teste Sorológico para COVID-19 , Quirópteros/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Monitoramento Epidemiológico , Furões/imunologia , Imunoprecipitação , Mesocricetus/imunologia , Fosfoproteínas/imunologia , Coelhos/imunologia , Estudos Soroepidemiológicos , Glicoproteína da Espícula de Coronavírus/imunologia
9.
Transbound Emerg Dis ; 68(5): 2842-2852, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34323385

RESUMO

African swine fever (ASF) has been endemic in sub-Saharan Africa since the 1960s. Following its introduction in Senegal, in 1957, ASF steadily progressed through West Africa, reaching Burkina Faso in 2003, and later Mali in 2016. Despite the heavy burden of disease on pig production, little information is available on the genetic diversity of Africa swine fever virus (ASFV) in Burkina Faso, Mali and Senegal. Here, we used real-time PCR ASFV to detect the ASFV genome in samples collected between 1989 and 2016, in Burkina Faso, Mali and Senegal, and conventional approaches for isolate characterization. The C-terminal end of the p72 protein gene, the full E183L gene and the central variable region (CVR) within the B602L gene in ASFV genome were sequenced and compared to publicly available sequences. ASFV genome was found in 27 samples, 19 from Burkina Faso, three from Mali and five from Senegal. The phylogenetic analyses showed that all viruses belong to genotype I, with the ASFVs from Burkina Faso and Mali grouping with genotype Ia and ASFV serogroup 4, and those from Senegal with genotype Ib and the ASFV serogroup 1. The analysis of the CVR tetrameric tandem repeat sequences (TRS) showed four TRS variants in Burkina Faso, two in Senegal and one in Mali. The three countries did not share any common TRS, and all CVRs of this study differed from previously reported CVRs in West Africa, except for Senegal. Three of the five isolates from Senegal fully matched with the CVR, p72 and p54 sequences from ASFV IC96 collected during the 1996 ASF outbreak in Ivory Coast. This study shows the spread of the same ASFV strains across countries, highlighting the importance of continuous monitoring of ASFV isolates. It also calls for an urgent need to establish a regional plan for the control and eradication of ASF in West Africa.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Febre Suína Africana/epidemiologia , Vírus da Febre Suína Africana/genética , Animais , Burkina Faso/epidemiologia , Variação Genética , Genótipo , Mali/epidemiologia , Filogenia , Senegal/epidemiologia , Análise de Sequência de DNA/veterinária , Suínos
10.
Front Immunol ; 12: 666543, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211465

RESUMO

Sheeppox (SPP) is a highly contagious disease of small ruminants caused by sheeppox virus (SPPV) and predominantly occurs in Asia and Africa with significant economic losses. SPPV is genetically and immunologically closely related to goatpox virus (GTPV) and lumpy skin disease virus (LSDV), which infect goats and cattle respectively. SPPV live attenuated vaccines (LAVs) are used for vaccination against SPP and goatpox (GTP). Mechanisms related to innate immunity elicited by SPPV are unknown. Although adaptive immunity is responsible for long-term immunity, it is the innate responses that prevent viral invasion and replication before LAVs generate specific long-term protection. We analyzed the relative expression of thirteen selected genes that included pattern recognition receptors (PRRs), Nuclear factor-κß p65 (NF-κß), and cytokines to understand better the interaction between SPPV and its host. The transcripts of targeted genes in sheep PBMC incubated with either wild type (WT) or LAV SPPV were analyzed using quantitative PCR. Among PRRs, we observed a significantly higher expression of RIG-1 in PBMC incubated with both WT and LAV, with the former producing the highest expression level. However, there was high inter-individual variability in cytokine transcripts levels among different donors, with the expression of TNFα, IL-15, and IL-10 all significantly higher in both PBMC infected with either WT or LAV compared to control PBMC. Correlation studies revealed a strong significant correlation between RIG-1 and IL-10, between TLR4, TNFα, and NF-κß, between IL-18 and IL-15, and between NF-κß and IL-10. There was also a significant negative correlation between RIG-1 and IFNγ, between TLR3 and IL-1 ß, and between TLR4 and IL-15 (P< 0.05). This study identified RIG-1 as an important PRR in the signaling pathway of innate immune activation during SPPV infection, possibly through intermediate viral dsRNA. The role of immunomodulatory molecules produced by SPPV capable of inhibiting downstream signaling activation following RIG-1 upregulation is discussed. These findings advance our knowledge of the induction of immune responses by SPPV and will help develop safer and more potent vaccines against SPP and GTP.


Assuntos
Capripoxvirus/imunologia , Imunidade Inata , Infecções por Poxviridae/veterinária , Doenças dos Ovinos/prevenção & controle , Vacinas Virais/imunologia , Animais , Capripoxvirus/genética , Capripoxvirus/isolamento & purificação , Leucócitos Mononucleares/imunologia , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Superfície Celular , Ovinos , Vacinas Atenuadas/imunologia
11.
Microorganisms ; 9(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073392

RESUMO

Lumpy skin disease (LSD), an economically significant disease in cattle caused by lumpy skin disease virus (LSDV), is endemic to nearly all of Africa. Since 2012, LSDV has emerged as a significant epizootic pathogen given its rapid spread into new geographical locations outside Africa, including the Middle East, Eastern Europe, and Asia. To assess the genetic diversity of LSDVs in East Africa, we sequenced and analyzed the RPO30 and GPCR genes of LSDV in twenty-two archive samples collected in Ethiopia, Kenya, and Sudan before the appearance of LSD in the Middle East and its incursion into Europe. We compared them to publicly available sequences of LSDVs from the same region and those collected elsewhere. The results showed that the East African field isolates in this study were remarkably similar to each other and to previously sequenced field isolates of LSDV for the RPO30 and GPCR genes. The only exception was LSDV Embu/B338/2011, a field virus collected in Kenya, which displayed mixed features between the LSDV Neethling vaccine and field isolates. LSDV Embu/B338/2011 had the same 12-nucleotide insertion found in LSDV Neethling and KS-1 vaccines. Further analysis of the partial EEV glycoprotein, B22R, RNA helicase, virion core protein, NTPase, and N1R/p28-like protein genes showed that LSDV Embu/B338/2011 differs from previously described LSDV variants carrying the 12-nucleotide insertion in the GPCR gene. These findings highlight the importance of the constant monitoring of genetic variation among LSDV isolates.

12.
J Virol Methods ; 295: 114200, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34087339

RESUMO

Transmission mitigation of SARS-CoV-2 requires the availability of accurate and sensitive detection methods. There are several commercial ad hoc molecular diagnostic kits currently on the market, many of which have been evaluated by different groups. However, in low resource settings the availability and cost of these commercial kits can be a limiting factor for many diagnostic laboratories. In such cases alternatives need to be identified. With this in mind, eight commercial reverse transcription quantitative real-time PCR (RT-qPCR) master mixes from Applied Biosystems (Thermo Fisher Scientific), Bio-Rad, Biotech Rabbit, Promega, Qiagen, QuantaBio, Invitrogen (Thermo Fisher Scientific) and Takara using the same commercial primer and probe mix [LightMix® Modular SARS and Wuhan CoV E-gene mix (TIB MolBiol, Germany)] were evaluated. Three ad hoc molecular diagnostic kits [GeneFinder™ COVID-19 Plus RealAmp kit (Osang Healthcare); genesig® Real-Time PCR Coronavirus COVID-19 (Primerdesign); and ViroReal® Kit SARS-CoV-2 & SARS-CoV (Ingenetix)] were also included in the study. The limit of detection was calculated for each assay using serial dilutions of a defined clinical sample. The performances of the assays were compared using a panel of 178 clinical samples and their analytical specificity assessed against a panel of human betacoronaviruses. Inter assay agreement was assessed using statistical tests (Bland-Altman, Fleiss-Kappa and Cohen's Kappa) and was shown to be excellent to good in all cases. We conclude that all of the assays evaluated in this study can be used for the routine detection of SARS-CoV-2 and that the RT-qPCR master mixes are a valid alternative to ad hoc molecular diagnostic kits.


Assuntos
Teste de Ácido Nucleico para COVID-19 , COVID-19/diagnóstico , Kit de Reagentes para Diagnóstico , SARS-CoV-2/isolamento & purificação , Testes Diagnósticos de Rotina , Humanos , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética , Sensibilidade e Especificidade
13.
Pathogens ; 10(5)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064577

RESUMO

Porcine circovirus type 3 (PCV-3) infection is widely distributed in domestic pig populations in America, Europe, and Asia. However, no data is currently available about its presence and distribution in Africa. This study investigated the presence of PCV-3 in pigs (n = 122) in Namibia, by means of biomolecular methods. The pig samples collected (n = 122) were representative of the swine industry in Namibia, covering the major pig production facilities in the country. All of the samples tested were negative for PCV-3, and this indicated that the virus was either not present in the country or was circulating at low levels. Further studies are needed to better understand the distribution, if any, of PCV-3 in Namibia.

14.
J Wildl Dis ; 57(3): 708-711, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33961035

RESUMO

Nasal swabs collected from 40 wild ruminants in Namibia were analyzed by PCR for the presence of lumpy skin disease virus (LSDV) DNA. One sample from an asymptomatic eland (Taurotragus oryx) tested positive, providing the first evidence of the presence of LSDV DNA in an eland.


Assuntos
Antílopes , Vírus da Doença Nodular Cutânea , Animais , Bovinos , Vírus da Doença Nodular Cutânea/genética , Namíbia/epidemiologia , Reação em Cadeia da Polimerase/veterinária
15.
Transbound Emerg Dis ; 68(5): 2787-2794, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33818903

RESUMO

African swine fever (ASF) is a severe haemorrhagic disease of domestic and wild pigs caused by the African swine fever virus (ASFV). In recent years, ASF has steadily spread towards new geographical areas, reaching Europe and Asia. On January 15th, 2019, Mongolia reported its first ASF outbreak to the World Organization for Animal Health (OIE), becoming, after China, the second country in the region affected by the disease. Following an event of unusual mortality in domestic pigs in Bulgan Province, a field team visited four farms and a meat market in the region to conduct an outbreak investigation and collect samples for laboratory analysis. Different organs were examined for ASF associated lesions, and total nucleic acid was extracted for real-time PCR, virus isolation and molecular characterization. The real-time PCR results confirmed ASFV DNA in 10 out of 10 samples and ASFV was isolated. Phylogenetic analysis established that ASFVs from Mongolia belong to genotype II and serogroup 8. The viruses were identical to each other, and to domestic pig isolates identified in China and Russia, based on the comparison of five genomic targets. Our results suggest a cross-border spread of ASFV, without indicating the source of infection.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Febre Suína Africana/epidemiologia , Vírus da Febre Suína Africana/genética , Animais , Genótipo , Mongólia , Filogenia , Sus scrofa , Suínos
16.
Microorganisms ; 9(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923417

RESUMO

Goatpox virus (GTPV) belongs to the genus Capripoxvirus, together with sheeppox virus (SPPV) and lumpy skin disease virus (LSDV). GTPV primarily affects sheep, goats and some wild ruminants. Although GTPV is only present in Africa and Asia, the recent spread of LSDV in Europe and Asia shows capripoxviruses could escape their traditional geographical regions to cause severe outbreaks in new areas. Therefore, it is crucial to develop effective source tracing of capripoxvirus infections. Earlier, conventional phylogenetic methods, based on limited samples, identified three different nucleotide sequence profiles in the G-protein-coupled chemokine receptor (GPCR) gene of GTPVs. However, this method did not differentiate GTPV strains by their geographical origins. We have sequenced the GPCR gene of additional GTPVs and analyzed them with publicly available sequences, using conventional alignment-based methods and an alignment-free approach exploiting k-mer frequencies. Using the alignment-free method, we can now classify GTPVs based on their geographical origin: African GTPVs and Asian GTPVs, which further split into Western and Central Asian (WCA) GTPVs and Eastern and Southern Asian (ESA) GTPVs. This approach will help determine the source of introduction in GTPV emergence in disease-free regions and detect the importation of additional strains in disease-endemic areas.

17.
Arch Virol ; 166(6): 1723-1728, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33721098

RESUMO

Porcine circovirus 2 (PCV-2) is the causative agent of porcine circovirus diseases (PCVD). A study was undertaken to determine whether PCV-2 was present in samples collected from commercial pigs (n = 46) and warthogs (n = 42) in Namibia between 2019 and 2020. Twenty-three of the collected samples were positive by PCR (13 from pigs and 10 from warthogs), and a phylogenetic analysis of ORF2 identified three genotypes (PCV-2b and PCV-2d in pigs and PCV-2c in warthogs). This is the first time that PCV-2 has been identified in warthogs and in Namibia. It is also the first report of PCV-2c in Africa.


Assuntos
Infecções por Circoviridae/veterinária , Circovirus/genética , Genótipo , Doenças dos Suínos/virologia , Animais , Infecções por Circoviridae/epidemiologia , Infecções por Circoviridae/virologia , Namíbia/epidemiologia , Filogenia , Suínos , Doenças dos Suínos/epidemiologia
18.
Transbound Emerg Dis ; 68(5): 2890-2896, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33725423

RESUMO

African swine fever (ASF) is a highly lethal and contagious viral haemorrhagic disease of domestic and wild pigs, caused by the ASF virus (ASFV). After entering China in 2018, the disease has continued to spread through Asia. In September 2019, a team from the Indonesian Research Center for Veterinary Science, Bogor, investigated outbreaks in backyard pigs in the Dairi and Humbang Hasundutan districts of North Sumatra province. In January 2020, three pigs purchased from a pig seller in Bogor District, West Java province were also tested. Real-time PCR results confirmed ASFV DNA in sixteen out of twenty-nine samples, with nine positive samples from North Sumatra and seven from West Java. Four partial or full-length genes (i.e. p72, p54, pB602L and CD2v) and a 356-bp fragment between the I73R and I329L genes were sequenced from representative samples. Phylogenetic analysis established that the ASFV in the samples from both North Sumatra and West Java were identical, indicating a common source of infection, and that they belonged to the p72 genotype II and serogroup 8. The sequences from the Indonesian ASFVs were also identical to other genotype II ASFV from domestic pigs in Vietnam, China and Russia.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Febre Suína Africana/epidemiologia , Vírus da Febre Suína Africana/genética , Animais , Genótipo , Indonésia/epidemiologia , Filogenia , Análise de Sequência de DNA/veterinária , Sus scrofa , Suínos
19.
BMC Vet Res ; 17(1): 61, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514360

RESUMO

BACKGROUND: Lumpy skin disease (LSD) is a contagious viral disease of cattle caused by lumpy skin disease virus (LSDV). LSD has recently spread in Asia following outbreaks in the Middle East and Europe. The disease emerged in Bangladesh in July 2019 in the Chattogram district, then rapidly spread throughout the entire country. We investigated six LSD outbreaks in Bangladesh to record the clinical signs and collect samples for diagnostic confirmation. Furthermore, we performed the molecular characterization of Bangladesh isolates, analyzing the full RPO30 and GPCR genes and the partial EEV glycoprotein gene. RESULTS: Clinical observations revealed common LSD clinical signs in the affected cattle. PCR and real-time PCR, showed the presence of the LSDV genome in samples from all six districts. Phylogenetic analysis and detailed inspection of multiple sequence alignments revealed that Bangladesh isolates differ from common LSDV field isolates encountered in Africa, the Middle East, and Europe, as well as newly emerged LSDV variants in Russia and China. Instead, they were closely related to LSDV KSGP-0240, LSDV NI2490, and LSDV Kenya. CONCLUSIONS: These results show the importance of continuous monitoring and characterization of circulating strains and the need to continually refine the strategies for differentiating vaccine strains from field viruses.


Assuntos
Doença Nodular Cutânea/epidemiologia , Vírus da Doença Nodular Cutânea/genética , Vírus da Doença Nodular Cutânea/isolamento & purificação , Animais , Bangladesh/epidemiologia , Bovinos , Surtos de Doenças/veterinária , Genoma Viral , Doença Nodular Cutânea/diagnóstico , Vírus da Doença Nodular Cutânea/classificação , Filogenia , Reação em Cadeia da Polimerase/veterinária
20.
Transbound Emerg Dis ; 68(3): 1253-1262, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32770642

RESUMO

Since November 2018, several countries in West and Central Africa have reported mortalities in donkeys and horses. Specifically, more than 66,000 horses and donkeys have succumbed to disease in Burkina Faso, Chad, Cameroon, The Gambia, Ghana, Mali, Niger, Nigeria, and Senegal. Strangles caused by Streptococcus equi subsp equi, African Horse Sickness (AHS) virus, and Equine influenza virus (EIV) were all suspected as potential causative agents. This study reports the identification of EIV in field samples collected in Niger and Senegal. Phylogenetic analysis of the hemagglutinin and neuraminidase genes revealed that the identified viruses belonged to clade 1 of the Florida sublineage and were very similar to viruses identified in Nigeria in 2019. Interestingly, they were also more similar to EIVs from recent outbreaks in South America than to those in Europe and the USA. This is one of the first reports providing detailed description and characterization of EIVs in West and Central Africa region.


Assuntos
Surtos de Doenças/veterinária , Doenças dos Cavalos/epidemiologia , Vírus da Influenza A Subtipo H3N8/genética , Infecções por Orthomyxoviridae/veterinária , Animais , Genes Virais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Doenças dos Cavalos/transmissão , Doenças dos Cavalos/virologia , Cavalos , Vírus da Influenza A Subtipo H3N8/classificação , Neuraminidase/genética , Níger/epidemiologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Filogenia , Senegal/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...