Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361004

RESUMO

This article reviews evidence suggesting that a common mechanism of initiation leads to the development of many prevalent types of cancer. Endogenous estrogens, in the form of catechol estrogen-3,4-quinones, play a central role in this pathway of cancer initiation. The catechol estrogen-3,4-quinones react with specific purine bases in DNA to form depurinating estrogen-DNA adducts that generate apurinic sites. The apurinic sites can then lead to cancer-causing mutations. The process of cancer initiation has been demonstrated using results from test tube reactions, cultured mammalian cells, and human subjects. Increased amounts of estrogen-DNA adducts are found not only in people with several different types of cancer but also in women at high risk for breast cancer, indicating that the formation of adducts is on the pathway to cancer initiation. Two compounds, resveratrol, and N-acetylcysteine, are particularly good at preventing the formation of estrogen-DNA adducts in humans and are, thus, potential cancer-prevention compounds.


Assuntos
Acetilcisteína/farmacologia , Carcinogênese/efeitos dos fármacos , Estradiol/farmacologia , Estrona/farmacologia , Quinonas/farmacologia , Resveratrol/farmacologia , Animais , Antioxidantes/farmacologia , Carcinogênese/genética , Adutos de DNA , Estradiol/toxicidade , Estrogênios/farmacologia , Estrogênios/toxicidade , Estrona/toxicidade , Humanos , Quinonas/toxicidade
2.
Horm Cancer ; 10(2-3): 77-88, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30877616

RESUMO

Androgens are thought to cause prostate cancer, but the underlying mechanisms are unclear. Data from animal studies suggest that for androgens to cause prostate cancer, they must be aromatized to estrogen and act in concert with estrogen metabolites. We tested the hypothesis that androgen-receptor and estrogen receptor-mediated effects of androgen and estrogen are necessary, as well as genotoxicity of estrogen metabolites. NBL rats were treated with androgenic and estrogenic compounds for 16-75 weeks through slow-release silastic implants or pellets. Testosterone alone induced cancer in the prostate of 37% of rats. 5α-Dihydrotestosterone, which cannot be converted to estradiol or testosterone, did not cause a significant prostate cancer incidence (4%). Addition of estradiol to 5α-dihydrotestosterone treatment did not markedly enhance prostate cancer incidence (14%), unlike adding estradiol to testosterone treatment which induced a 100% tumor incidence. Testosterone plus estradiol treatment induced a DNA adduct detectable by 32P-postlabeling, oxidative DNA damage (8-hydroxyguanosine), and lipid peroxidation at the site within the prostate where this treatment causes cancers, preceding later cancer formation. The non-estrogenic 4-hydroxy metabolite of estradiol, when combined with testosterone, induced prostatic dysplasia within 16 weeks and, after long-term treatment, a very low incidence of prostate cancer (21%). When an estrogen that cannot be hydroxylated (2-fluoroestradiol) was added to this combined treatment with testosterone and 4-hydroxyestradiol, dysplasia frequency after 16 weeks was doubled. These results strongly support the hypothesis, but additional definitive studies are needed which may identify new targets to interfere with these mechanisms that are clinically feasible in humans.


Assuntos
Androgênios/efeitos adversos , Carcinogênese , Estrogênios/efeitos adversos , Neoplasias da Próstata/induzido quimicamente , Animais , Carcinoma , Adutos de DNA , Dano ao DNA , Di-Hidrotestosterona/metabolismo , Estradiol/metabolismo , Estrogênios de Catecol/química , Guanosina/análogos & derivados , Guanosina/farmacologia , Humanos , Incidência , Masculino , Próstata , Ratos , Receptores de Estrogênio/metabolismo , Testosterona/metabolismo
3.
ACS Omega ; 3(5): 5511-5515, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29876539

RESUMO

Arsenic trioxide (As2O3) is an environmental carcinogen and a putative endocrine disruptor. Resveratrol has been shown to reverse As2O3-induced oxidative damage. In immortalized but nontransformed estrogen receptor α-negative human breast cells (MCF10A), we observed that 25 µM resveratrol ameliorated As2O3-induced cytotoxicity. As2O3, in the presence or absence of 25 µM resveratrol, induced quinone reductase (NAD(P)H quinone dehydrogenase 1), via the induction of NFE2-related factor 2. As2O3 caused a repression of cytochrome P450 (CYP)1B1, but the addition of 25 µM resveratrol rescued the expression of cytochrome P450 1B1 and kept it at a constant level. Therefore, 25 µM resveratrol can modulate the effects of As2O3 on enzymes involved in estrogen metabolism.

4.
Int J Cancer ; 141(6): 1078-1090, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28388839

RESUMO

Endogenous estrogens become carcinogens when dangerous metabolites, the catechol estrogen quinones, are formed. In particular, the catechol estrogen-3,4-quinones can react with DNA to produce an excess of specific depurinating estrogen-DNA adducts. Loss of these adducts leaves apurinic sites in the DNA, generating subsequent cancer-initiating mutations. Unbalanced estrogen metabolism yields excessive catechol estrogen-3,4-quinones, increasing formation of depurinating estrogen-DNA adducts and the risk of initiating cancer. Evidence for this mechanism of cancer initiation comes from various types of studies. High levels of depurinating estrogen-DNA adducts have been observed in women with breast, ovarian or thyroid cancer, as well as in men with prostate cancer or non-Hodgkin lymphoma. Observation of high levels of depurinating estrogen-DNA adducts in high risk women before the presence of breast cancer indicates that adduct formation is a critical factor in breast cancer initiation. Formation of analogous depurinating dopamine-DNA adducts is hypothesized to initiate Parkinson's disease by affecting dopaminergic neurons. Two dietary supplements, N-acetylcysteine and resveratrol complement each other in reducing formation of catechol estrogen-3,4-quinones and inhibiting formation of estrogen-DNA adducts in cultured human and mouse breast epithelial cells. They also inhibit malignant transformation of these cells. In addition, formation of adducts was reduced in women who followed a Healthy Breast Protocol that includes N-acetylcysteine and resveratrol. When initiation of cancer is blocked, promotion, progression and development of the disease cannot occur. These results suggest that reducing formation of depurinating estrogen-DNA adducts can reduce the risk of developing a variety of types of human cancer.


Assuntos
Adutos de DNA/metabolismo , Estrogênios/metabolismo , Neoplasias/etiologia , Neoplasias/prevenção & controle , Doença de Parkinson/etiologia , Doença de Parkinson/prevenção & controle , Animais , Dopamina/metabolismo , Humanos , Neoplasias/metabolismo , Doença de Parkinson/metabolismo , Purinas/metabolismo
5.
J Rare Dis Res Treat ; 2(3): 22-29, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30854528

RESUMO

Endogenous estrogens become carcinogens when excessive catechol estrogen quinone metabolites are formed. Specifically, the catechol estrogen-3,4-quinones can react with DNA to produce a large amount of specific depurinating estrogen-DNA adducts, formed at the N-3 of Ade and N-7 of Gua. Loss of these adducts leaves apurinic sites in the DNA, which can generate subsequent cancer-initiating mutations. Unbalanced estrogen metabolism yields excessive catechol estrogen-3,4-quinones, increasing formation of the depurinating estrogen-DNA adducts and the risk of initiating cancer. Evidence for this mechanism of cancer initiation comes from studies in vitro, in cell culture, in animal models and in human subjects. High levels of estrogen-DNA adducts have been observed in women with breast, ovarian or thyroid cancer, and in men with prostate cancer or non-Hodgkin lymphoma. Observation of high levels of depurinating estrogen-DNA adducts in high risk women before the presence of breast cancer indicates that adduct formation is a critical factor in breast cancer initiation. Two dietary supplements, N-acetylcysteine and resveratrol, complement each other in reducing formation of catechol estrogen-3,4-quinones and inhibiting formation of estrogen-DNA adducts in cultured human and mouse breast epithelial cells. They also inhibit malignant transformation of these epithelial cells. In addition, formation of adducts was reduced in women who followed a Healthy Breast Protocol that includes N-acetylcysteine and resveratrol. Blocking initiation of cancer prevents promotion, progression and development of the disease. These results suggest that reducing formation of depurinating estrogen-DNA adducts can reduce the risk of developing a variety of types of human cancer.

6.
Clin Transl Med ; 5(1): 12, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26979321

RESUMO

Estrogens can initiate cancer by reacting with DNA. Specific metabolites of endogenous estrogens, the catechol estrogen-3,4-quinones, react with DNA to form depurinating estrogen-DNA adducts. Loss of these adducts leaves apurinic sites in the DNA, generating mutations that can lead to the initiation of cancer. A variety of endogenous and exogenous factors can disrupt estrogen homeostasis, which is the normal balance between estrogen activating and protective enzymes. In fact, if estrogen metabolism becomes unbalanced and generates excessive catechol estrogen 3,4-quinones, formation of depurinating estrogen-DNA adducts increases and the risk of initiating cancer is greater. The levels of depurinating estrogen-DNA adducts are high in women diagnosed with breast cancer and those at high risk for the disease. High levels of depurinating estrogen-DNA adducts before the presence of breast cancer indicates that adduct formation is a critical factor in breast cancer initiation. Women with thyroid or ovarian cancer also have high levels of estrogen-DNA adducts, as do men with prostate cancer or non-Hodgkin lymphoma. Depurinating estrogen-DNA adducts are initiators of many prevalent types of human cancer. These findings and other discoveries led to the recognition that reducing the levels of estrogen-DNA adducts could prevent the initiation of human cancer. The dietary supplements N-acetylcysteine and resveratrol inhibit formation of estrogen-DNA adducts in cultured human breast cells and in women. These results suggest that the two supplements offer an approach to reducing the risk of developing various prevalent types of human cancer. Graphical abstract Major metabolic pathway in cancer initiation by estrogens.

7.
J Altern Complement Med ; 21(6): 321-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25974761

RESUMO

BACKGROUND/OBJECTIVE: A functional medicine approach to reduce breast cancer risk is preferable to early detection and treatment in maintaining breast health. Estrogens are implicated in breast cancer initiation through conversion to metabolites that react with DNA to form specific adducts associated with the development of breast cancer. The purpose of this study was to determine the ability of a defined clinical intervention, the AVERTi-Healthy Breast Program (AHBP), to reduce breast cancer risk conditions likely to develop into breast disease. METHODS: To obtain evidence that risk conditions in breast tissue can be reduced with a defined, multifaceted approach, this small clinical trial of 21 women measured indicators of breast health. A detailed clinical evaluation was conducted with all participants, including identification of physical symptoms, such as areas of tenderness upon palpation. Two laboratory assessments were conducted to determine the efficacy of the AHBP. First, 31 estrogen metabolites, estrogen conjugates, and depurinating estrogen-DNA adducts in urine samples taken before intervention were analyzed. The ratio of DNA adducts to metabolites and conjugates was calculated for each sample. Second, oxidative stress was analyzed by measuring the redox potential of glutathione and cysteine in blood plasma. All assessments were conducted before and after participation. RESULTS: The estrogen adduct ratio and redox potential were improved after 90 days on the AHBP. A significant mean reduction of 3.31 (p=0.03) was observed in the adduct ratio, along with a significant improvement in the redox potential of 3.80 (p=0.05). The significant change in the adduct ratio occurred in women whose oxidative stress profile also improved. CONCLUSION: These significant within-individual decreases suggest that the AHBP can reduce the risk for breast cancer in a relatively short time.


Assuntos
Neoplasias da Mama/prevenção & controle , Mama/fisiologia , Promoção da Saúde , Serviços de Saúde da Mulher , Adulto , Biomarcadores/sangue , Biomarcadores/urina , Feminino , Humanos , Pessoa de Meia-Idade , Estresse Oxidativo/fisiologia , Projetos Piloto
8.
Open J Prev Med ; 4(6): 429-437, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25431744

RESUMO

BACKGROUND: Estrogen exposure plays a role in breast cancer (BC) development. A novel estrogen biomarker, the estrogen DNA adduct (EDA) ratio, was shown to be elevated in women at high-risk of BC and among BC cases. Modifiable factors may impact the EDA ratio, with studies demonstrating that resveratrol reduces EDA ratio in vitro. We sought to examine the hypothesis that dietary intake of fruits and vegetables is inversely associated with EDA ratio. METHODS: This analysis was conducted in 53 pre-menopausal, healthy women aged 40-45 years from a cross-sectional study in which participants provided first-void urine samples and 3-day food records. Urine samples were analyzed using ultraperformance liquid chromatography/tandem mass spectrometry. The EDA ratio was calculated as the estrogen-DNA adducts divided by estrogen metabolites and conjugates. A trend test was used to assess associations between tertiles of dietary intake using linear regression. RESULTS: After adjustment for age, total energy, percent adiposity, serum estradiol and estrone-sulfate, we observed inverse associations of EDA ratio with carbohydrate consumption (P=0.01) and vegetable intake (P =0.01). EDA ratio was inversely associated with 5 botanical groups (Chenopodiaceae: P=0.02; Umbelliferae: P=0.03; Compositae: P=0.01; Ericaceae: P=0.01; Musaceae: P=0.03) but not fruit intake overall. CONCLUSION: Although these data require replication before conclusions are drawn, this report suggests an inverse association between vegetable and carbohydrate consumption and EDA ratio. IMPACT: While more information is still needed, these findings suggest a link between dietary intake and a biomarker that is both associated with high-risk BC status and associated with modifiable factors.

9.
Mol Aspects Med ; 36: 1-55, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23994691

RESUMO

Elucidation of estrogen carcinogenesis required a few fundamental discoveries made by studying the mechanism of carcinogenesis of polycyclic aromatic hydrocarbons (PAH). The two major mechanisms of metabolic activation of PAH involve formation of radical cations and diol epoxides as ultimate carcinogenic metabolites. These intermediates react with DNA to yield two types of adducts: stable adducts that remain in DNA unless removed by repair and depurinating adducts that are lost from DNA by cleavage of the glycosyl bond between the purine base and deoxyribose. The potent carcinogenic PAH benzo[a]pyrene, dibenzo[a,l]pyrene, 7,12-dimethylbenz[a]anthracene and 3-methylcholanthrene predominantly form depurinating DNA adducts, leaving apurinic sites in the DNA that generate cancer-initiating mutations. This was discovered by correlation between the depurinating adducts formed in mouse skin by treatment with benzo[a]pyrene, dibenzo[a,l]pyrene or 7,12-dimethylbenz[a]anthracene and the site of mutations in the Harvey-ras oncogene in mouse skin papillomas initiated by one of these PAH. By applying some of these fundamental discoveries in PAH studies to estrogen carcinogenesis, the natural estrogens estrone (E1) and estradiol (E2) were found to be mutagenic and carcinogenic through formation of the depurinating estrogen-DNA adducts 4-OHE1(E2)-1-N3Ade and 4-OHE1(E2)-1-N7Gua. These adducts are generated by reaction of catechol estrogen quinones with DNA, analogously to the DNA adducts obtained from the catechol quinones of benzene, naphthalene, and the synthetic estrogens diethylstilbestrol and hexestrol. This is a weak mechanism of cancer initiation. Normally, estrogen metabolism is balanced and few estrogen-DNA adducts are formed. When estrogen metabolism becomes unbalanced, more catechol estrogen quinones are generated, resulting in higher levels of estrogen-DNA adducts, which can be used as biomarkers of unbalanced estrogen metabolism and, thus, cancer risk. The ratio of estrogen-DNA adducts to estrogen metabolites and conjugates has repeatedly been found to be significantly higher in women at high risk for breast cancer, compared to women at normal risk. These results indicate that formation of estrogen-DNA adducts is a critical factor in the etiology of breast cancer. Significantly higher adduct ratios have been observed in women with breast, thyroid or ovarian cancer. In the women with ovarian cancer, single nucleotide polymorphisms in the genes for two enzymes involved in estrogen metabolism indicate risk for ovarian cancer. When polymorphisms produce high activity cytochrome P450 1B1, an activating enzyme, and low activity catechol-O-methyltransferase, a protective enzyme, in the same woman, she is almost six times more likely to have ovarian cancer. These results indicate that formation of estrogen-DNA adducts is a critical factor in the etiology of ovarian cancer. Significantly higher ratios of estrogen-DNA adducts to estrogen metabolites and conjugates have also been observed in men with prostate cancer or non-Hodgkin lymphoma, compared to healthy men without cancer. These results also support a critical role of estrogen-DNA adducts in the initiation of cancer. Starting from the perspective that unbalanced estrogen metabolism can lead to increased formation of catechol estrogen quinones, their reaction with DNA to form adducts, and generation of cancer-initiating mutations, inhibition of estrogen-DNA adduct formation would be an effective approach to preventing a variety of human cancers. The dietary supplements resveratrol and N-acetylcysteine can act as preventing cancer agents by keeping estrogen metabolism balanced. These two compounds can reduce the formation of catechol estrogen quinones and/or their reaction with DNA. Therefore, resveratrol and N-acetylcysteine provide a widely applicable, inexpensive approach to preventing many of the prevalent types of human cancer.


Assuntos
Carcinógenos/toxicidade , Sistema Enzimático do Citocromo P-450/metabolismo , Adutos de DNA/toxicidade , Estradiol/metabolismo , Estrogênios de Catecol/metabolismo , Estrona/metabolismo , Mutagênicos/toxicidade , Neoplasias/induzido quimicamente , Animais , Biomarcadores Tumorais/metabolismo , Carcinógenos/metabolismo , Adutos de DNA/metabolismo , Feminino , Humanos , Masculino , Mutagênicos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade
10.
Int J Cancer ; 134(10): 2414-23, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24170413

RESUMO

Greater exposure to estrogens is a risk factor for ovarian cancer. To investigate the role of estrogens in ovarian cancer, a spot urine sample and a saliva sample were obtained from 33 women with ovarian cancer and 34 age-matched controls. Thirty-eight estrogen metabolites, conjugates and DNA adducts were analyzed in the urine samples using ultraperformance liquid chromatography/tandem mass spectrometry, and the ratio of adducts to metabolites and conjugates was calculated for each sample. The ratio of depurinating estrogen-DNA adducts to estrogen metabolites and conjugates was significantly higher in cases compared to controls (p < 0.0001), demonstrating high specificity and sensitivity. DNA was purified from the saliva samples and analyzed for genetic polymorphisms in the genes for two estrogen-metabolizing enzymes. Women with two low-activity alleles of catechol-O-methyltransferase plus one or two high-activity alleles of cytochrome P450 1B1 had higher levels of estrogen-DNA adducts and were more likely to have ovarian cancer. These findings indicate that estrogen metabolism is unbalanced in ovarian cancer and suggest that formation of estrogen-DNA adducts plays a critical role in the initiation of ovarian cancer.


Assuntos
Adutos de DNA/urina , DNA de Neoplasias/urina , Estrogênios/urina , Idoso , Hidrocarboneto de Aril Hidroxilases/genética , Hidrocarboneto de Aril Hidroxilases/metabolismo , Catecol O-Metiltransferase/genética , Catecol O-Metiltransferase/metabolismo , Cromatografia Líquida de Alta Pressão , Citocromo P-450 CYP1B1 , Adutos de DNA/química , Adutos de DNA/metabolismo , DNA de Neoplasias/química , DNA de Neoplasias/metabolismo , Estrogênios/química , Estrogênios/metabolismo , Feminino , Frequência do Gene , Genótipo , Humanos , Modelos Lineares , Pessoa de Meia-Idade , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/urina , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Saliva/química , Saliva/metabolismo , Espectrometria de Massas em Tandem
11.
Carcinogenesis ; 34(11): 2587-92, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23843041

RESUMO

Sulforaphane (SFN) is a potent inducer of detoxication enzymes such as NAD(P)H:quinone oxidoreductase 1 (NQO1) and glutathione-S-transferase (GST) via the Kelch-like erythroid-derived protein with CNC homology-associated protein 1 (Keap1)-NF-E2-related factor 2 (Nrf2) signaling pathway. NQO1 reduces the carcinogenic estrogen metabolite, catechol estrogen-3,4-quinone, whereas GSTs detoxify it through conjugation with glutathione. These 3,4-quinones can react with DNA to form depurinating DNA adducts. Thus, SFN may alter estrogen metabolism and thus protect against estrogen-mediated DNA damage and carcinogenesis. Human breast epithelial MCF-10A cells were treated with either vehicle or SFN and either estradiol (E2) or its metabolite 4-hydroxyestradiol (4-OHE2). 4-Hydroxy-derived estrogen metabolites and depurinating DNA adducts formed from E2 and its interconvertable metabolite estrone (E1) were analyzed by mass spectrometry. Levels of the depurinated adducts, 4-OHE1/2-1-N3Adenine and 4-OHE1/2-1-N7Guanine, were reduced by 60% in SFN-treated cells, whereas levels of 4-OCH3E1/2 and 4-OHE1/2-glutathione conjugates increased. To constitutively enhance the expression of Nrf2-regulated genes, cells were treated with either scrambled or siKEAP1 RNA. Following E2 or 4-OHE2 treatments, levels of the adenine and guanine adducts dropped 60-70% in siKEAP1-treated cells, whereas 4-OHE1/2-glutathione conjugates increased. However, 4-OCH3E1/2 decreased 50% after siKEAP1 treatment. Thus, treatment with SFN or siKEAP1 has similar effects on reduction of depurinating estrogen-DNA adduct levels following estrogen challenge. However, these pharmacologic and genetic approaches have different effects on estrogen metabolism to O-methyl and glutathione conjugates. Activation of the Nrf2 pathway, especially elevated NQO1, may account for some but not all of the protective effects of SFN against estrogen-mediated DNA damage.


Assuntos
Anticarcinógenos/farmacologia , Mama/efeitos dos fármacos , Adutos de DNA/efeitos dos fármacos , Estrogênios/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Isotiocianatos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Apoptose , Western Blotting , Mama/citologia , Mama/metabolismo , Proliferação de Células , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Técnicas Imunoenzimáticas , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Espectrometria de Massas em Tandem
12.
Int J Cancer ; 133(11): 2642-9, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23686454

RESUMO

Well-differentiated thyroid cancer most frequently occurs in premenopausal women. Greater exposure to estrogens may be a risk factor for thyroid cancer. To investigate the role of estrogens in thyroid cancer, a spot urine sample was obtained from 40 women with thyroid cancer and 40 age-matched controls. Thirty-eight estrogen metabolites, conjugates and DNA adducts were analyzed by using ultraperformance liquid chromatography/tandem mass spectrometry and the ratio of adducts to metabolites and conjugates was calculated for each sample. The ratio of depurinating estrogen-DNA adducts to estrogen metabolites and conjugates significantly differed between cases and controls (p < 0.0001), demonstrating high specificity and sensitivity. These findings indicate that estrogen metabolism is unbalanced in thyroid cancer and suggest that formation of estrogen-DNA adducts might play a role in the initiation of thyroid cancer.


Assuntos
Adutos de DNA/urina , Estrogênios/metabolismo , Estrogênios/urina , Neoplasias da Glândula Tireoide/urina , Adulto , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/urina , Cromatografia Líquida , Feminino , Humanos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Fatores de Risco , Espectrometria de Massas em Tandem , Neoplasias da Glândula Tireoide/patologia
13.
J Steroid Biochem Mol Biol ; 132(1-2): 73-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22386952

RESUMO

This study was conducted to determine whether the ratio of estrogen-DNA adducts to their respective metabolites and conjugates in serum differed between women with early-onset breast cancer and those with average or high risk of developing breast cancer. Serum samples from women at average risk (n=63) or high risk (n=80) for breast cancer (using Gail model) and women newly diagnosed with early breast cancer (n=79) were analyzed using UPLC-MS/MS. Adduct ratios were statistically compared among the three groups, and the Area Under the Receiver Operating Characteristic Curve (AUC) was used to identify a diagnostic cut-off point. The median adduct ratio in the average-risk group was significantly lower than that of both the high-risk group and the breast cancer group (p values<0.0001), and provided good discrimination between those at average versus high risk of breast cancer (AUC=0.84, 95% CI 0.77-0.90). Sensitivity and specificity were maximized at an adduct ratio of 77. For women in the same age and BMI group, the odds of being at high risk for breast cancer was 8.03 (95% CI 3.46-18.7) times higher for those with a ratio of at least 77 compared to those with a ratio less than 77. The likelihood of being at high risk for breast cancer was significantly increased for those with a high adduct ratio relative to those with a low adduct ratio. These findings suggest that estrogen-DNA adducts deserve further study as potential biomarkers for risk of developing breast cancer.


Assuntos
Neoplasias da Mama/sangue , Adutos de DNA/sangue , Estrogênios/sangue , Adulto , Idoso , Biomarcadores/sangue , Feminino , Humanos , Pessoa de Meia-Idade , Risco
14.
Drug Discov Today Dis Mech ; 9(1-2): e55-e69, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-26246832

RESUMO

Metabolism of estrogens via the catechol estrogen pathway is characterized by a balanced set of activating and protective enzymes (homeostasis). Disruption of homeostasis, with excessive production of catechol estrogen quinones, can lead to reaction of these quinones with DNA to form depurinating estrogen-DNA adducts. Some of the mutations generated by these events can lead to initiation of breast cancer. A wealth of evidence, from studies of metabolism, mutagenicity, cell transformation and carcinogenicity, demonstrates that estrogens are genotoxic. Women at high risk for breast cancer, or diagnosed with the disease, have relatively high levels of depurinating estrogen-DNA adducts compared to normal-risk women. The dietary supplements N-acetylcysteine and resveratrol can inhibit formation of catechol estrogen quinones and their reaction with DNA to form estrogen-DNA adducts, thereby preventing initiation of breast cancer.

15.
Drug Discov Today Dis Mech ; 9(1-2): e1-e3, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-26624611
16.
IUBMB Life ; 64(2): 169-79, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22162200

RESUMO

Depurinating DNA adducts formed by aromatic hydrocarbons and catechol estrogen quinones play a major role in cancer initiation. Most of these adducts depurinate instantaneously, but some guanine adducts depurinate from DNA with half-lives of hours. We report here, that after 10 h at 37 °C, reaction of estradiol-3,4-quinone (E(2)-3,4-Q) with ds-DNA to yield N7Gua and N3Ade adducts was complete and more efficient than with ss-DNA. When E(2)-3,4-Q reacted with t-RNA, no adducts were detected after 10 h, and the level of N3Ade and N7Gua adducts after 10 days was less than half that with ss-DNA after 10 h. Reaction of E(2)-3,4-Q and dG yielded 4-OHE(2)-1-N7dG, which spontaneously depurinated to yield 4-OHE(2)-1-N7Gua. To investigate the mechanism of depurination, E(2)-3,4-Q was reacted with carbocyclicdeoxyguanosine, in which the ring oxygen of the deoxyribose moiety is substituted with CH(2) , and depurination was observed. The results from this experiment demonstrate that the oxocarbenium ion mechanism plays the major role in depurination and provides the first experimental evidence for this mechanism. A newly discovered ß-elimination mechanism also plays a minor role in depurination. Understanding why the depurinating estrogen-DNA adducts come from DNA, and not from RNA, underscores the critical role that these adducts play in initiating cancer.


Assuntos
Carcinógenos/química , Transformação Celular Neoplásica , Adutos de DNA/química , Dano ao DNA , Estradiol/análogos & derivados , Ciclopentanos/química , Adutos de DNA/síntese química , DNA de Cadeia Simples/química , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Estradiol/química , Humanos , Concentração de Íons de Hidrogênio , Cinética , Purinas/química , RNA de Transferência/química
17.
IUBMB Life ; 63(12): 1087-93, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22045657

RESUMO

The neurotransmitter dopamine is oxidized to its quinone (DA-Q), which at neutral pH undergoes intramolecular cyclization by 1,4-Michael addition, followed by oxidation to form leukochrome, then aminochrome, and finally neuromelanin. At lower pH, the amino group of DA is partially protonated, allowing the competitive intermolecular 1,4-Michael addition with nucleophiles in DNA to form the depurinating adducts, DA-6-N3Ade and DA-6-N7Gua. Catechol estrogen-3,4-quinones react by 1,4-Michael addition to form the depurinating 4-hydroxyestrone(estradiol)-1-N3Ade [4-OHE1(E2)-1-N3Ade] and 4-OHE1(E2)-1-N7Gua adducts, which are implicated in the initiation of breast and other human cancers. The effect of pH was studied by reacting tyrosinase-activated DA with DNA and measuring the formation of depurinating adducts. The most adducts were formed at pH 4, 5, and 6, and their level was nominal at pH 7 and 8. The N3Ade adduct depurinated instantaneously, but N7Gua had a half-life of 3 H. The slow loss of the N7Gua adduct is analogous to that observed in previous studies of natural and synthetic estrogens. The antioxidants N-acetylcysteine and resveratrol efficiently blocked formation of the DA-DNA adducts. Thus, slightly acidic conditions render competitive the reaction of DA-Q with DNA to form depurinating adducts. We hypothesize that formation of these adducts could lead to mutations that initiate Parkinson's disease. If so, use of N-acetylcysteine and resveratrol as dietary supplements may prevent initiation of this disease.


Assuntos
Antioxidantes/química , Adutos de DNA/química , Adutos de DNA/genética , Dopamina/química , Monofenol Mono-Oxigenase/química , Doença de Parkinson/genética , Acetilcisteína/química , Benzoquinonas/química , Benzoquinonas/metabolismo , Adutos de DNA/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Cinética , Melatonina/química , Doença de Parkinson/patologia , Resveratrol , Estilbenos/química , Ácido Tióctico/química
18.
J Steroid Biochem Mol Biol ; 127(3-5): 276-81, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21896331

RESUMO

Extensive evidence exists that the reaction of estrogen metabolites with DNA produces depurinating adducts that, in turn, induce mutations and cellular transformation. While it is clear that these estrogen metabolites result in a neoplastic phenotype in vitro, further evidence supporting the link between estrogen-DNA adduct formation and its role in neoplasia induction in vivo would strengthen the evidence for a genotoxic mechanism. Diethylstilbestrol (DES), an estrogen analogue known to increase the risk of breast cancer in women exposed in utero, is hypothesized to induce neoplasia through a similar genotoxic mechanism. Cultured MCF-10F human breast epithelial cells were treated with DES at varying concentrations and for various times to determine whether the addition of DES to MCF-10F cells resulted in the formation of depurinating adducts. This is the first demonstration of the formation of DES-DNA adducts in human breast cells. A dose-dependent increase in DES-DNA adducts was observed. Demonstrating that treatment of MCF-10F cells with DES, a known human carcinogen, yields depurinating adducts provides further support for the involvement of these adducts in the induction of breast neoplasia. Previous studies have demonstrated the ability of antioxidants such as resveratrol to prevent the formation of estrogen-DNA adducts, thus preventing a key carcinogenic event. In this study, when MCF-10F cells were treated with a combination of resveratrol and DES, a dose-dependent reduction in the level of DES-DNA adducts was also observed.


Assuntos
Adutos de DNA/química , Dietilestilbestrol/química , Glândulas Mamárias Humanas/efeitos dos fármacos , Estilbenos/farmacologia , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Eletroquímica , Feminino , Humanos , Glândulas Mamárias Humanas/metabolismo , Resveratrol
19.
Biomarkers ; 16(5): 434-44, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21692648

RESUMO

Damage to DNA by dopamine quinone and/or catechol estrogen quinones may play a significant role in the initiation of Parkinson's disease (PD). Depurinating estrogen-DNA adducts are shed from cells and excreted in urine. The aim of this study was to discover whether higher levels of estrogen-DNA adducts are associated with PD. Forty estrogen metabolites, conjugates, and DNA adducts were analyzed in urine samples from 20 PD cases and 40 matched controls by using ultra performance liquid chromatography/tandem mass spectrometry. The levels of adducts in cases versus controls (P < 0.005) suggest that unbalanced estrogen metabolism could play a causal role in the initiation of PD.


Assuntos
Encéfalo/metabolismo , Estrogênios/metabolismo , Doença de Parkinson/etiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Cromatografia Líquida/métodos , Adutos de DNA/metabolismo , Estrogênios/urina , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/metabolismo , Extração em Fase Sólida , Espectrometria de Massas em Tandem
20.
J Steroid Biochem Mol Biol ; 125(3-5): 169-80, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21397019

RESUMO

Among the numerous small molecules in the body, the very few aromatic ones include the estrogens and dopamine. In relation to cancer initiation, the estrogens should be considered as chemicals, not as hormones. Metabolism of estrogens is characterized by two major pathways. One is hydroxylation to form the 2- and 4-catechol estrogens, and the second is hydroxylation at the 16α position. In the catechol pathway, the metabolism involves further oxidation to semiquinones and quinones, including formation of the catechol estrogen-3,4-quinones, the major carcinogenic metabolites of estrogens. These electrophilic compounds react with DNA to form the depurinating adducts 4-OHE(1)(E(2))-1-N3Ade and 4-OHE(1)(E(2))-1-N7Gua. The apurinic sites obtained by this reaction generate the mutations that may lead to the initiation of cancer. Oxidation of catechol estrogens to their quinones is normally in homeostasis, which minimizes formation of the quinones and their reaction with DNA. When the homeostasis is disrupted, excessive amounts of catechol estrogen quinones are formed and the resulting increase in depurinating DNA adducts can lead to initiation of cancer. Substantial evidence demonstrates the mutagenicity of the estrogen metabolites and their ability to induce transformation of mouse and human breast epithelial cells, and tumors in laboratory animals. Furthermore, women at high risk for breast cancer or diagnosed with the disease, men with prostate cancer, and men with non-Hodgkin lymphoma all have relatively high levels of estrogen-DNA adducts, compared to matched control subjects. Specific antioxidants, such as N-acetylcysteine and resveratrol, can block the oxidation of catechol estrogens to their quinones and their reaction with DNA. As a result, the initiation of cancer can be prevented.


Assuntos
Estrogênios/metabolismo , Neoplasias/etiologia , Neoplasias/prevenção & controle , Animais , Neoplasias da Mama/metabolismo , Adutos de DNA/genética , Adutos de DNA/metabolismo , Estrogênios de Catecol/metabolismo , Feminino , Humanos , Masculino , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...