Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Chemosphere ; 239: 124666, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31479911


The toxicity of polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) is well known, and for this reason studying and monitoring these chemicals is fundamental. Activated carbon fibers (ACFs) are made of an adsorbent material widely used in the industrial field for the removal of micropollutants. The first step in this work was to perform a physico-chemical characterization of the adsorbent, focused on the analytical use of it. In particular, its specific surface area was defined around 2500 m2/g consisting in a homogeneous microporosity distribution and the characterization of ACF surface functional groups pointed out a balance between basic and acidic group. The validity of using the ACF as solid phase extraction and as passive sampler for PCDD/Fs and PCBs in water, has been evaluated by the percentage recovery (R %) of 13C12-labeled standards of PCDD/Fs and PCBs added in a known volume of water. The results were compared to the R% of Liquid-Liquid Extraction which showed a better reproducibility of the results and the proposed method satisfy completely the requirements of US EPA reference methods.

Carvão Vegetal/química , Dibenzofuranos Policlorados/análise , Monitoramento Ambiental/métodos , Recuperação e Remediação Ambiental/métodos , Bifenilos Policlorados/análise , Dibenzodioxinas Policloradas/análise , Benzofuranos/análise , Fibra de Carbono , Reprodutibilidade dos Testes , Extração em Fase Sólida , Água
Sci Total Environ ; : 135354, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31839322


Co-combustion of biomass and plastic waste has emerged as one of the most promising approach at the plastic waste management challenge. This strategy is particularly attractive since it can simultaneously solve the increasing energy demand and reduce the plastic wastes volume. However, since the combustion of both plastic wastes and natural materials is a potential source of organic micropollutants, such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs) and of polycyclic aromatic hydrocarbons (PAHs), beside particulate matter, the environmental sustainability of the waste to energy (WtE) co-combustion strategy has to be assessed. To this end, the emissions of dioxin like (dl)-PCBs, PCDD/Fs and PAHs from a 4-MW thermal power plant fueled with rice husk, partially replaced by end-of-life polyethylene (PE) industrial waste (up to 15% of the thermal power of the plant), were investigated. GC-MS/MS analyses have demonstrated that the co-combustion of PE waste and rice husk presents a profile of environmental sustainability. The concentrations of dl-PCBs, PCDD/Fs and PAHs were extremely low and they have remained almost unaffected by introducing PE in feed. In particular, emissions of PCCD/Fs and dl-PCBs in flue gas were in the range 0.6-1.0 and 0.2-0.6 pg TEQ/Nm3, respectively, while PAHs concentrations ranged from 410 to 825 ng/Nm3. Furthermore, the emission factors of these organic pollutants were found to be lower with PE increasing rate while particulate matter emissions were not affected by co-combustions. Collectively, the investigation has demonstrated that the noils of the industrial PE, due to the low content in halides and metals, can be used as auxiliary fuel and energetically recycled through co-combustion with rice husk. This case of study represents an effective application of the WtE strategy and a concrete approach to mitigate the threat of plastic pollution.