Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Mais filtros

Base de dados
Intervalo de ano de publicação
Am J Hematol ; 94(4): 467-474, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30697803


Although modern medical management has lowered overt stroke occurrence in patients with sickle cell disease (SCD), progressive white matter (WM) damage remains common. It is known that cerebral blood flow (CBF) increases to compensate for anemia, but sufficiency of cerebral oxygen delivery, especially in the WM, has not been systematically investigated. Cerebral perfusion was measured by arterial spin labeling in 32 SCD patients (age range: 10-42 years old, 14 males, 7 with HbSC, 25 HbSS) and 25 age and race-matched healthy controls (age range: 15-45 years old, 10 males, 12 with HbAS, 13 HbAA); 8/24 SCD patients were receiving regular blood transfusions and 14/24 non-transfused SCD patients were taking hydroxyurea. Imaging data from control subjects were used to calculate maps for CBF and oxygen delivery in SCD patients and their T-score maps. Whole brain CBF was increased in SCD patients with a mean T-score of 0.5 and correlated with lactate dehydrogenase (r2 = 0.58, P < 0.0001). When corrected for oxygen content and arterial saturation, whole brain and gray matter (GM) oxygen delivery were normal in SCD, but WM oxygen delivery was 35% lower than in controls. Age and hematocrit were the strongest predictors for WM CBF and oxygen delivery in patients with SCD. There was spatial co-localization between regions of low oxygen delivery and WM hyperintensities on T2 FLAIR imaging. To conclude, oxygen delivery is preserved in the GM of SCD patients, but is decreased throughout the WM, particularly in areas prone to WM silent strokes.

Anemia Falciforme , Circulação Cerebrovascular , Angiografia por Ressonância Magnética , Oxigênio/metabolismo , Substância Branca , Adolescente , Adulto , Anemia Falciforme/diagnóstico por imagem , Anemia Falciforme/metabolismo , Anemia Falciforme/fisiopatologia , Feminino , Hematócrito , Humanos , Masculino , Pessoa de Meia-Idade , Substância Branca/irrigação sanguínea , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo , Substância Branca/fisiopatologia
Proc IEEE Int Symp Biomed Imaging ; 2018: 889-892, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30344893


White matter (WM) lesion identification and segmentation has proved of clinical importance for diagnosis, treatment and neurological outcomes. Convolutional neural networks (CNN) have demonstrated their success for large lesion load segmentation, but are not sensitive to small deep WM and sub-cortical lesion segmentation. We propose to use multi-scale and supervised fully convolutional networks (FCN) to segment small WM lesions in 22 anemic patients. The multiple scales enable us to identify the small lesions while reducing many false alarms, and the multi-supervised scheme allows a better management of the unbalanced data. Compared to a single FCN (Dice score ~0.31), the performance on the testing dataset of our proposed networks achieved a Dice score of 0.78.

Proc IEEE Int Symp Biomed Imaging ; 2018: 1309-1312, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30344894


Long-term outcomes for Tetralogy of Fallot (TOF) have improved dramatically in recent years, but survivors are still afflicted by cerebral damage. In this paper, we characterized the prevalence and predictors of cerebral silent infarction (SCI) and their relationship to cerebral blood flow (CBF) in 46 adult TOF patients. We calculated both whole brain and regional CBF using 2D arterial spin labeling (ASL) images, and investigated the spatial overlap between voxel-wise CBF values and white matter hyperintensities (WMHs) identified from T2-FLAIR images. SCIs were found in 83% of subjects and were predicted by the year of the patient's first cardiac surgery and patient's age at scanning (combined r2 0.44). CBF was not different in brain regions prone to stroke compared with healthy white matter.

Magn Reson Imaging ; 47: 137-146, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29229306


PURPOSE: To investigate possible sources of quantification errors in global cerebral blood flow (CBF) measurements by comparing pseudo continuous arterial spin labeling (PCASL) and phase contrast (PC) MRI in anemic, hyperemic subjects. METHODS: All studies were performed on a Philips 3T Achieva MRI scanner. PC and PCASL CBF examinations were performed in 10 healthy, young adult subjects and 18 young adults with chronic anemia syndromes including sickle cell disease and thalassemia. CBF estimates from single and two compartment ASL kinetic models were compared. Numerical simulation and flow phantom experiments were used to explore the effects of blood velocity and B1+ on CBF quantification and labeling efficiency. RESULTS: PCASL CBF underestimated PC in both populations using a single compartment model (30.1±9.2% control, 45.2±17.2% anemia). Agreement substantially improved using a two-compartment model (-8.0±6.0% control, 11.7±12.3% anemia). Four of the anemic subjects exhibited venous outflow of ASL signal, suggestive of cerebrovascular shunt, possibly confounding PC-PCASL comparisons. Additionally, sub-study experiments demonstrated that B1+ was diminished at the labeling plane (82.9±5.1%), resulting in suboptimal labeling efficiency. Correcting labeling efficiency for diminished B1+, PCASL slightly overestimated PC CBF in controls (-15.4±6.8%) and resulted in better matching of CBF estimates in anemic subjects (0.7±10.0% without outflow, 10.5±9.4% with outflow). CONCLUSIONS: This work demonstrates that a two-compartment model is critical for PCASL quantification in hyperemic subjects. Venous outflow and B1+ under-excitation may also contribute to flow underestimation, but further study of these effects is required.

Velocidade do Fluxo Sanguíneo/fisiologia , Circulação Cerebrovascular/fisiologia , Angiografia por Ressonância Magnética , Marcadores de Spin , Adolescente , Anemia/diagnóstico por imagem , Anemia Falciforme/diagnóstico por imagem , Artérias/diagnóstico por imagem , Feminino , Humanos , Estudos Longitudinais , Masculino , Microscopia de Contraste de Fase , Reprodutibilidade dos Testes , Adulto Jovem
Artigo em Inglês | MEDLINE | ID: mdl-31178616


Sickle cell disease (SCD) is a genetic hematological disease in which the hemoglobin molecule in red blood cells is abnormal. It is closely associated with many symptoms, including pain, anemia, chest syndrome and neurocognitive impairment. One of the most debilitating symptoms is elevated risk for cerebro-vascular accidents. The corpus callosum (CC), as the largest and most prominent white matter (WM) structure in the brain, can reflect the chronic cerebrovascular damage resulting from silent strokes or infarctions in asymptomatic SCD patients. While a lot of studies have reported WM alterations in this cohort, little is known about the shape deformation of the CC. Here we perform the first surface morphometry analysis of the CC in SCD patients using four different shape metrics on T1-weighted magnetic resonance images. We detect regional surface morphological differences in the CC between 11 patients and 10 healthy control subjects. Differences are located in the genu, posterior midbody and splenium, potentially casting light on the anatomical substrates underlying neuropsychological test differences between the SCD and control groups.

Artigo em Inglês | MEDLINE | ID: mdl-30344363


Sickle cell disease (SCD) is a hereditary blood disorder in which the oxygen-carrying hemoglobin molecule in red blood cells is abnormal. It affects numerous people in the world and leads to a shorter life span, pain, anemia, serious infections and neurocognitive decline. Tract-Specific Analysis (TSA) is a statistical method to evaluate white matter alterations due to neurocognitive diseases, using diffusion tensor magnetic resonance images. Here, for the first time, TSA is used to compare 11 major brain white matter (WM) tracts between SCD patients and age-matched healthy subjects. Alterations are found in the corpus callosum (CC), the cortico-spinal tract (CST), inferior fronto-occipital fasciculus (IFO), inferior longitudinal fasciculus (ILF), superior longitudinal fasciculus (SLF), and uncinated fasciculus (UNC). Based on previous studies on the neurocognitive functions of these tracts, the significant areas found in this paper might be related to several cognitive impairments and depression, both of which are observed in SCD patients.