Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Toxicol Rep ; 10: 308-319, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891509


Rapid urbanization and industrial development have prompted potentially toxic elements (PTEs) in urban soil in Bangladesh, which is a great concern for ecological and public health matters. The present study explored the receptor-based sources, probable human health and ecological risks of PTEs (As, Cd, Pb, Cr, Ni, and Cu) in the urban soil of the Jashore district, Bangladesh. The USEPA modified method 3050B and atomic absorption spectrophotometers were used to digest and evaluate the PTEs concentration in 71 soil samples collected from eleven different land use areas, respectively. The concentration ranges of As, Cd, Pb, Cr, Ni, and Cu in the studied soils were 1.8-18.09, 0.1-3.58, 0.4-113.26, 0.9-72.09, 2.1-68.23, and 3.82-212.57 mg/kg, respectively. The contamination factor (CF), pollution load index (PLI), and enrichment factor (EF) were applied to evaluate the ecological risk posed by PTEs in soils. Soil quality evaluation indices showed that Cd was a great contributor to soil pollution. The PLI values range was 0.48-2.82, indicating base levels to continuous soil degradation. The positive matrix factorization (PMF) model showed that As (50.3 %), Cd (38.8 %), Cu (64.7 %), Pb (81.8 %) and Ni (47.2 %) were derived from industrial sources and mixed anthropogenic sources, while Cr (78.1 %) from natural sources. The highest contamination was found in the metal workshop, followed by the industrial area, and brick filed site. Soil from all land use types revealed moderate to high ecological risk after evaluating probable ecological risks, and the descending order of single metal potential ecological risk was Cd > As > Pb > Cu > Ni > Cr. Ingestion was the primary route of exposure to potentially toxic elements for both adults and children from the study area soil. The overall non-cancer risk to human health is caused by PTEs for children (HI=0.65 ± 0.1) and adults (HI=0.09 ± 0.03) under USEPA safe limit (HI>1), while the cancer risks from exclusively ingesting As through soil were 2.10E-03 and 2.74E-04 for children and adults, respectively, exceeding the USEPA acceptable standard (>1E-04).

Heliyon ; 8(10): e11172, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36325133


This study was intended to assess heavy metal contents and sources in commonly consumed vegetables and fish collected from the Jashore district of Bangladesh and to evaluate the probable human health risks via the ingesting of those vegetables and fish species. A total of 130 vegetable and fish samples were analyzed for As, Mn, Cu, Cr, Ni, and Pb concentration by an atomic absorption spectrophotometer. Metals and metalloids like As, Pb, and Cr in vegetable species were greater than the maximum allowable concentration (MAC), while Pb and cu in fish species exceeded the MAC. Pollution evaluation index values were ranges from 0.40-10.35 and 1.53-2.78 for vegetable and fish species, respectively, indicating light to serious pollution. Lactuca sativa followed by Cucurbita moschata, Amaranthus gangeticus for vegetables and Channa punctate, Oreochromis mossambicus, followed by Dendrobranchiata for fish are the most contaminated food items. The positive matrix factorization model showed that As (81.9%), Ni (48%), Cr (49.6%), Mn (46%), Pb (44.3%), and Cu (44.4%) for vegetable species and As (86.9%), Ni (90.5%), Mn (67.6%), Pb (65.3%), Cr (57%) and Cu (46.2%) for fish species were resulting from agrochemical, atmospheric emission, irrigation, contaminated feed, and mixed sources. The self-organizing map and principle component analysis indicates three spatial patterns e.g., As-Mn-Cu, Pb-Cr, and Ni in vegetables and As-Mn-Cr, Cu-Ni, and Pb in fish samples. The THQ values for single elements were less than 1 (except As for vegetables and Pb for fish species) for all food items but the HI values for all of the vegetables (2.18E+00 to 2.04E+01) and fish (1.07E+00 to 9.39E+00) samples were exceeded the USEPA acceptable risk level (HI > 1E+00). While the cancer risks only induced by As for all vegetables and fish species, which exceeded the USEPA safe level (TCR>1E-04). Sensitivity analysis indicates that metal concentration was the most responsible factor for carcinogenic risk.

J Water Health ; 20(6): 888-902, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35768965


This study investigated groundwater pollution and potential human health risks from arsenic, iron, and manganese in the rural area of Jashore, Bangladesh. Study results show that the mean value of groundwater pH is 7.25 ± 0.31, with a mean conductivity of 633.94 ± 327.41 µs/cm, while about 73, 97, and 91% of groundwater samples exceeded the Bangladesh drinking water standard limits for As, Fe, and Mn, respectively. Groundwater pollution evaluation indices, including the heavy metal pollution index, the heavy metal evaluation index, the degree of contamination, and the Nemerow pollution index, show that approximately 97, 82, 100, and 100% of samples are in the high degree of pollution category, respectively. Spatial distribution exhibited that the study area is highly exposed to As (73%), Fe (82%), and Mn (46%). In the case of non-carcinogenic health risk via oral exposure, about 94% of samples suggest a high category of risk for infants, and 97% of samples are found to be at high risk for children and adults. The carcinogenic risk of arsenic via an oral exposure pathway suggests that approximately 97% of the samples are found to be at high risk for infants, and all of the samples are at high risk for both adults and children.

Arsênio , Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Adulto , Arsênio/análise , Arsênio/toxicidade , Bangladesh , Criança , Monitoramento Ambiental , Humanos , Ferro/análise , Manganês/análise , Manganês/toxicidade , Medição de Risco , Poluentes Químicos da Água/análise
Sci Rep ; 10(1): 5206, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32251356


Groundwater through hand-operated tubewell (a type of water well) tapping is the main source of drinking water in Bangladesh. This study investigated iron and manganese concentration in groundwater across Jashore district-one of the worst arsenic contaminated area in Bangladesh. One working tubewell that had been tested previously for arsenic and marked safe (green) was selected from each unions of the district. Results revealed that approximately 73% and 87% of groundwater samples exceeded the limits for iron and manganese in Bangladesh drinking water, respectively. Additionally, spatial distribution of iron and manganese indicate that only 5% of the total surface area of groundwater is covered by safe level of iron and manganese. Human health risk due to ingestion of iron and manganese through drinking water was evaluated using hazard quotients (HQ) for adults and children. The result of the health risk assessment revealed that the non-carcinogenic health risks due to ingestion of iron (HQ up to 1.446 for adults and 0.590 for children) and manganese (HQ up to 2.459 for adults and 1.004 for children) contaminated groundwater are much higher among adults than children. On the basis of occurrences, spatial distribution and health risk assessment results, the area can be categorized as a high-risk zone for iron and manganese-related problems and needs special attention in order to protect public health of local residents.

Água Subterrânea/química , Ferro/toxicidade , Manganês/toxicidade , Medição de Risco , Abastecimento de Água , Poços de Água , Adulto , Arsênio/análise , Bangladesh , Criança , Humanos , Ferro/análise , Manganês/análise