Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31977197

RESUMO

Structurally precise copper hydrides [Cu11H2{S2P(OiPr)2}6(C≡CR)3], R = Ph (1), C6H4F (2), and C6H4OMe (3), were first synthesized from the polyhydrido copper cluster [Cu20H11{S2P(OiPr)2}9] with nine equivalents of terminal alkynes. Later, their isolated yields were significantly improved by direct synthesis from [Cu(CH3CN)4](PF6), [NH4][S2P(OiPr)2], NaBH4, and alkynes along with NEt3 in THF. 1, 2, and 3 were fully characterized by single-crystal X-ray diffraction, ESI-MS, and multinuclear NMR spectroscopy. All three clustershave 11 copper atoms, adopting 3,3,4,4,4-pentacapped trigonal prismatic geometry, with two hydrides inside the Cu11 cage, the position of which was ascertained by a single-crystal neutron diffraction structure of cluster 1 co-crystallized with a [Cu7(H){S2P(OiPr)2}6] (4) cluster. Six dithiophosphate and three alkynyl ligands stabilize the Cu11H2 core in which the two hydrides adopt a trigonal pyramidal coordination mode. This coordination mode is so far unprecedented for hydride. The 1H NMR resonance frequency of the two hydrides appears at 4.8 ppm, a value further confirmed by 2H NMR spectroscopy for their deuteride derivatives [Cu11(D)2{S2P(OiPr)2}6(C≡CR)3]. A DFT investigation allows understanding the bonding within this new type of copper(I) hydrides.

2.
Angew Chem Int Ed Engl ; 58(15): 4943-4947, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30770621

RESUMO

The structurally precise Cu-rich hydride nanoclusters [PdCu14 H2 (dtc/dtp)6 (C≡CPh)6 ] (dtc: di-butyldithiocarbamate (1); dtp: di-isopropyl dithiophosphate (2)) were synthesized from the reaction of polyhydrido copper clusters [Cu28 H15 (S2 CNn Bu2 )12 ]+ or [Cu20 H11 {S2 P(Oi Pr)2 }9 ] with phenyl acetylene in the presence of Pd(PPh3 )2 Cl2 . Their structures and compositions were determined by single-crystal X-ray diffraction and the results supported by ESI-mass spectrometry. Hydride positions in 1 were confirmed by single-crystal neutron diffraction. Each hydride is connected to one Pd0 and four CuI atoms in slightly distorted trigonalbipyramidal geometry. The anatomies of clusters 1 and 2 are very similar and DFT calculations allow rationalizing the interactions between the encapsulated [PdH2 ]2- unit and its Cu14 bicapped icosahedral cage. As a result, Pd has the highest coordination number (14) so far recorded.

3.
Chem Sci ; 9(33): 6785-6795, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30310611

RESUMO

We have synthesized and structurally characterized a series of centred cuboctahedral copper clusters, namely [Cu13{S2CNR2}6{C[triple bond, length as m-dash]CR'}4](PF6), 1a-d (where a: R = n Bu, R' = CO2Me; b: R = n Bu, R' = CO2Et; c: R = iPr, R' = CO2Et; d: R = n Pr, R' = 3,5-(CF3)2C6H3); [Cu12(µ12-S){S2CNR2}6{C[triple bond, length as m-dash]CR'}4], 2a-c; [Cu12(µ12-Cl){S2CNR2}6{C[triple bond, length as m-dash]CR'}4](PF6), 3a-e (where e: R = n Bu, R' = Ph); [Cu12(µ12-Br){S2CN n Bu2}6{C[triple bond, length as m-dash]CPh}4](PF6), 4e; and [Cu12(µ12-Cl)(µ3-Cl){S2CN n Bu2}6{C[triple bond, length as m-dash]CCO2Me}3]+ 5a. Cluster 1a is the first structurally characterized copper cluster having a Cu13 centered cuboctahedral arrangement, a miniature of the bulk copper fcc structure. Furthermore, the partial Cu(0) character in the 2-electron superatoms 1 was confirmed by XANES. Inverse coordination clusters 2-5 are the first examples of copper clusters containing main group elements (Cl, Br, S) with a hyper-coordination number, twelve. A combined theoretical and experimental study was performed, which shows that the central copper (formally Cu1-) in nanoclusters 1 can be replaced by chalcogen/halogen atoms, resulting in the formation of clusters 2-5 which show enhanced luminescence properties and increase in the ionic component of the host-guest interaction as Br ≈ Cl > S > Cu, which is consistent with the Cu-X Wiberg indices. The new compounds have been characterized by ESI-MS, 1H, 13C NMR, IR, UV-visible, emission spectroscopy, and the structures 2a-b, 3d-e, 4e and 5a were established by X-ray diffraction analysis.

4.
Acc Chem Res ; 51(10): 2475-2483, 2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30264984

RESUMO

The chalcogenolato silver and copper superatoms are currently a topic of cutting edge research besides the extensively studied Au n(SR) m clusters. Crystal structure analysis is an indispensable tool to gain deep insights into the anatomy of these sub-nanometer clusters. The metal framework and spatial arrangement of the chalcogenolates around the metal core assist in unravelling the structure-property relationships and fundamental mechanisms involved in their fabrication. In this Account, we discuss our contribution toward the development of dichalcogenolato Ag and Cu cluster chemistry covering their fabrication and precise molecular structures. Briefly introducing the significance of the single crystal structures of the atomically precise clusters, the novel dichalcogenolated two-electron superatomic copper and its alloy systems are presented first. The [Cu13{S2CNR}6{C≡CR'}4]+ is so far the first unique copper cluster having Cu13 centered cuboctahedra, which is a miniature of bulk fcc structure. The galvanic exchange of the central Cu with Ag or Au results in a similar anatomy of formed bimetallic [Au/Ag@Cu12(S2CN nBu2)6(C≡CPh)4][CuCl2] species. This is unique in the sense that other contemporary M13 cores in group 11 superatomic chemistry are compact icosahedra. The central doping of Ag or Au significantly affects the physiochemical properties of the bimetallic Cu-rich clusters. It is manifested in the dramatic quantum yield enhancement of the doped species [Au@Cu12(S2CN nBu2)6(C≡CPh)4]+ with a value of 0.59 at 77 K in 2-MeTHF. In the second part, the novel eight-electron dithiophosphate- and diselenophosphate-protected silver systems are presented. A completely different type of architecture was revealed for the first time from the successful structural determination of [Ag21{S2P(O iPr)2}12]+, [Ag20{S2P(O iPr)2}12] and [Au@Ag19{S2P(OPr)2}12]. They exhibit a nonhollow M13 (Ag or AuAg12) icosahedron, capped by 8 and 7 Ag atoms in the former and latter two species, respectively. The overall metal core units are protected by 12 dithiophosphate ligands and the metal-ligand interface structure was found to be quite different from that of Au n(SR) m. Notably, the [Ag20{S2P(O iPr)}12] cluster provides the first structural evidence of a silver superatom with a chiral metallic core. This chirality arises through the simple removal of one of capping Ag+ cations of [Ag21{S2P(O iPr)2}12]+ present on its C3 axis. Further, the effects of the ligand exchange on the structures of [Ag20{Se2P(O iPr)2}12], [Ag21{Se2P(OEt)2}12]+, and [AuAg20{Se2P(OEt)2}12]+ are studied extensively. The structure of the former species is similar to its dithiophosphate counterpart ( C3 symmetry). The latter two ( T symmetry) differ in the arrangement of 8 capping Ag atoms, as they form a cube engraving the Ag13 (AuAg12) icosahedron. The blue shifts in absorption spectra and photoluminescence further indicate the strong influence of the central Au atom in the doped clusters. Finally, the first paradigm of unusual heteroatom doping induced size-structure transformations is discussed by presenting the case of formation of [Au3Ag18{Se2P(O iPr)2}12]+ upon Au doping into [Ag20{Se2P(O iPr)2}12]0. Finally, before concluding this Account, we discuss the possibility of many unique structural isomers with different physical properties for the aforementioned Ag superatoms which need to be explored extensively in the future.

5.
Chem Asian J ; 13(5): 500-504, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29363268

RESUMO

Atomically precise Cu-rich bimetallic superatom clusters have been synthesized by adopting a galvanic exchange strategy. [Cu@Cu12 (S2 CNn Bu2 )6 (C≡CPh)4 ][CuCl2 ] (1) was used as a template to generate compositionally uniform clusters [M@Cu12 (S2 CNn Bu2 )6 (C≡CPh)4 ][CuCl2 ], where M=Ag (2), Au (3). Structures of 1, 2 and 3 were determined by single crystal X-ray diffraction and the results were supported by ESI-MS. The anatomies of clusters 1-3 are very similar, with a centred cuboctahedral cationic core that is surrounded by six di-butyldithiocarbamate (dtc) and four phenylacetylide ligands. The doped Ag and Au atoms were found to preferentially occupy the centre of the 13-atom cuboctahedral core. Experimental and theoretical analyses of the synthesized clusters revealed that both Ag and Au doping result in significant changes in cluster stability, optical characteristics and enhancement in luminescence properties.

6.
Angew Chem Int Ed Engl ; 56(34): 10178-10182, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28544757

RESUMO

The first atomically and structurally precise silver-nanoclusters stabilized by Se-donor ligands, [Ag20 {Se2 P(Oi Pr)2 }12 ] (3) and [Ag21 {Se2 P(OEt)2 }12 ]+ (4), were isolated by ligand replacement reaction of [Ag20 {S2 P(Oi Pr)2 }12 ] (1) and [Ag21 {S2 P(Oi Pr)2 }12 ]+ (2), respectively. Furthermore, doping reactions of 4 with Au(PPh3 )Cl resulted in the formation of [AuAg20 {Se2 P(OEt)2 }12 ]+ (5). Structures of 3, 4, and 5 were determined by single-crystal X-ray diffraction. The anatomy of cluster 3 with an Ag20 core having C3 symmetry is very similar to that of its dithiophosphate analogue 1. Clusters 4 and 5 exhibit an Ag21 and Au@Ag20 core of Oh symmetry composed of eight silver capping atoms in a cubic arrangement and encapsulating an Ag13 and Au@Ag12 centered icosahedron, respectively. Both ligand exchange and heteroatom doping result in significant changes in optical and emissive properties for chalcogen-passivated silver nanoparticles, which have been theoretically confirmed as 8-electron superatoms.

7.
Angew Chem Int Ed Engl ; 55(47): 14704-14708, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27781357

RESUMO

The first structurally characterized copper cluster with a Cu13 centered cuboctahedral arrangement, a model of the bulk copper fcc structure, was observed in [Cu13 (S2 CNn Bu2 )6 (C≡CR)4 ](PF6 ) (R=C(O)OMe, C6 H4 F) nanoclusters. Four of the eight triangular faces of the cuboctahedron are capped by acetylide groups in µ3  fashion, and each of the six square faces is bridged by a dithiolate ligand in µ2 ,µ2 fashion, which leads to a truncated tetrahedron of twelve sulfur atoms. DFT calculations are fully consistent with the description of these Cu13 clusters as two-electron superatoms, that is, a [Cu13 ]11+ core passivated by ten monoanionic ligands, with an a1 HOMO containing two 1S jellium electrons.

8.
Dalton Trans ; 43(26): 9976-85, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24849607

RESUMO

Cluster expansion reactions of cobaltaboranes were carried out using mono metal-carbonyls, metal halides and dichalcogenide ligands. Thermolysis of an in situ generated intermediate, obtained from the reaction of [Cp*CoCl]2 (Cp* = C5Me5) and [LiBH4·thf], with three equivalents of [Mo(CO)3(CH3CN)3] followed by the reaction with methyl iodide yielded isocloso-[(Cp*Co)3B6H7Co(CO)2] (1) and closo-[(Cp*Co)2B2H5Mo2(CO)6I] (2). Cluster 1 is ascribed to the isocloso structure based on a 10-vertex bicapped square antiprism geometry. In a similar manner, the reaction of [Cp*CoCl]2 with [LiBH4·thf] and the dichalcogenide ligand RS-SR (R = 1-OH-2,6-((t)Bu)2-C6H2) yielded nido cluster [(Cp*Co)2B2H2S2] (3). In parallel with the formation of the compounds 1-3, these reactions also yielded known cobaltaboranes [(Cp*Co)2B4H6] (4) and [(Cp*Co)3B4H4] in good yields. After the isolation of compound 4 in good yield, we verified its reactivity with PtBr2, which yielded closo-[(Cp*Co)2B4H2Br4] (5). To the best of our knowledge this is the second perhalogenated metallaborane cluster which has been recognized. All the new compounds were characterized by elemental analysis, IR, (1)H, (11)B, and (13)C NMR spectroscopy, and the geometric structures were unequivocally established by the X-ray diffraction analysis of compounds 1, 2, 3 and 5. Geometries obtained from the electronic structure calculations employing density functional theory (DFT) are in close agreement with the solid state X-ray structures. In addition, we analyzed the variation in the stability of the model compounds 1' (1': Cp analogue of 1, Cp = C5H5), [(CpCo)4B6H6] (1a) and [(CpRh)4B6H6] (1b).

9.
Chemistry ; 19(45): 15219-25, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24105718

RESUMO

The synthesis, structural characterization, and reactivity of new bridged borylene complexes are reported. The reaction of [{Cp*CoCl}2] with LiBH4·THF at -70 °C, followed by treatment with [M(CO)3(MeCN)3] (M=W, Mo, and Cr) under mild conditions, yielded heteronuclear triply bridged borylene complexes, [(µ3-BH)(Cp*Co)2(µ-CO)M(CO)5] (1-3; 1: M=W, 2: M=Mo, 3: M=Cr). During the syntheses of complexes 1-3, capped-octahedral cluster [(Cp*Co)2(µ-H)(BH)4{Co(CO)2}] (4) was also isolated in good yield. Complexes 1-3 are isoelectronic and isostructural to [(µ3-BH)(Cp*RuCO)2(µ-CO){Fe(CO)3}] (5) and [(µ3-BH)(Cp*RuCO)2(µ-H)(µ-CO){Mn(CO)3}] (6), with a trigonal-pyramidal geometry in which the µ3-BH ligand occupies the apical vertex. To test the reactivity of these borylene complexes towards bis-phosphine ligands, the room-temperature photolysis of complexes 1-3, 5, 6, and [{(µ3-BH)(Cp*Ru)Fe(CO)3}2(µ-CO)] (7) was carried out. Most of these complexes led to decomposition, although photolysis of complex 7 with [Ph2P(CH2)(n)PPh2] (n=1-3) yielded complexes 9-11, [3,4-(Ph2P(CH2)(n)PPh2)-closo-1,2,3,4-Ru2Fe2(BH)2] (9: n=1, 10: n=2, 11: n=3). Quantum-chemical calculations by using DFT methods were carried out on compounds 1-3 and 9-11 and showed reasonable agreement with the experimentally obtained structural parameters, that is, large HOMO-LUMO gaps, in accordance with the high stabilities of these complexes, and NMR chemical shifts that accurately reflected the experimentally observed resonances. All of the new compounds were characterized in solution by using mass spectrometry, IR spectroscopy, and (1)H, (13)C, and (11)B NMR spectroscopy and their structural types were unequivocally established by crystallographic analysis of complexes 1, 2, 4, 9, and 10.

10.
Inorg Chem ; 52(14): 7923-32, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23819867

RESUMO

We have synthesized and structurally characterized several dimetallaheteroborane clusters, namely, nido-[(Cp*Mo)2B4SH6], 1; nido-[(Cp*Mo)2B4SeH6], 2; nido-[(Cp*Mo)2B4TeClH5], 3; [(Cp*Mo)2B5SeH7], 4; [(Cp*Mo)2B6SeH8], 5; and [(CpW)2B5Te2H5], 6 (Cp* = η(5)-C5Me5, Cp = η(5)-C5H5). In parallel to the formation of 1-6, known [(CpM)2B5H9], [(Cp*M)2B5H9], (M = Mo, W) and nido-[(Cp*M)2B4E2H4] compounds (when M = Mo; E = S, Se, Te; M = W, E = S) were isolated as major products. Cluster 6 is the first example of tungstaborane containing a heavier chalcogen (Te) atom. A combined theoretical and experimental study shows that clusters 1-3 with their open face are excellent precursors for cluster growth reactions. As a result, the reaction of 1 and 2 with [Co2(CO)8] yielded clusters [(Cp*Mo)2B4H4E(µ3-CO)Co2(CO)4], 7-8 (7: E = S, 8: E = Se) and [(Cp*Mo)2B3H3E(µ-CO)3Co2(CO)3], 9-10 (9: E = S, 10: E = Se). In contrast, compound 3 under the similar reaction conditions yielded a novel 24-valence electron triple-decker sandwich complex, [(Cp*Mo)2{µ-η(6):η(6)-B3H3TeCo2(CO)5}], 11. Cluster 11 represents an unprecedented metal sandwich cluster in which the middle deck is composed of B, Co, and Te. All the new compounds have been characterized by elemental analysis, IR, (1)H, (11)B, (13)C NMR spectroscopy, and the geometric structures were unequivocally established by X-ray diffraction analysis of 1, 2, 4-7, and 9-11. Furthermore, geometries obtained from the electronic structure calculations employing density functional theory (DFT) are in close agreement with the solid state structure determinations. We have analyzed the discrepancy in reactivity of the chalcogenato metallaborane clusters in comparison to their parent metallaboranes with the help of a density functional theory (DFT) study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA