Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Mais filtros

Base de dados
Intervalo de ano de publicação
Phys Rev Lett ; 124(23): 237601, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32603164


Motivated by recent experimental realizations of polar metals with broken inversion symmetry, we explore the emergence of strong correlations driven by criticality when the polar transition temperature is tuned to zero. Overcoming previously discussed challenges, we demonstrate a robust mechanism for coupling between the critical mode and electrons in multiband metals. We identify and characterize several novel interacting phases, including non-Fermi liquids, when band crossings are close to the Fermi level and present their experimental signatures for three generic types of band crossings.

Nat Mater ; 18(3): 197-198, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30783229
Phys Rev Lett ; 117(15): 157201, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27768324


The heavy fermion compound URu_{2}Si_{2} continues to attract great interest due to the unidentified hidden order it develops below 17.5 K. The unique Ising character of the spin fluctuations and low-temperature quasiparticles is well established. We present detailed measurements of the angular anisotropy of the nonlinear magnetization that reveal a cos^{4}θ Ising anisotropy both at and above the ordering transition. With Landau theory, we show this implies a strongly Ising character of the itinerant hidden order parameter.

Phys Rev Lett ; 115(17): 177201, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26551137


In an extensive computational experiment, we test Polyakov's conjecture that under certain circumstances an isotropic Heisenberg model can develop algebraic spin correlations. We demonstrate the emergence of a multispin U(1) order parameter in a Heisenberg antiferromagnet on interpenetrating honeycomb and triangular lattices. The correlations of this relative phase angle are observed to decay algebraically at intermediate temperatures in an extended critical phase. Using finite-size scaling we show that both phase transitions are of the Berezinskii-Kosterlitz-Thouless type, and at lower temperatures we find long-range Z(6) order.

Nature ; 493(7434): 621-6, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23364741


The development of collective long-range order by means of phase transitions occurs by the spontaneous breaking of fundamental symmetries. Magnetism is a consequence of broken time-reversal symmetry, whereas superfluidity results from broken gauge invariance. The broken symmetry that develops below 17.5 kelvin in the heavy-fermion compound URu(2)Si(2) has long eluded such identification. Here we show that the recent observation of Ising quasiparticles in URu(2)Si(2) results from a spinor order parameter that breaks double time-reversal symmetry, mixing states of integer and half-integer spin. Such 'hastatic' order hybridizes uranium-atom conduction electrons with Ising 5f(2) states to produce Ising quasiparticles; it accounts for the large entropy of condensation and the magnetic anomaly observed in torque magnetometry. Hastatic order predicts a tiny transverse moment in the conduction-electron 'sea', a colossal Ising anisotropy in the nonlinear susceptibility anomaly and a resonant, energy-dependent nematicity in the tunnelling density of states.

Phys Rev Lett ; 109(23): 237205, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23368258


We introduce a two-dimensional frustrated Heisenberg antiferromagnet on interpenetrating honeycomb and triangular lattices. Classically the two sublattices decouple, and "order from disorder" drives them into a coplanar state. Applying Friedan's geometric approach to nonlinear sigma models, we obtain the scaling of the spin stiffnesses governed by the Ricci flow of a four-dimensional metric tensor. At low temperatures, the relative phase between the spins on the two sublattices is described by a six-state clock model with an emergent critical phase.