Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 22 Suppl 2: A567-76, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24922267

RESUMO

Organic light emitting diodes (OLEDs) with a quasi-crystal (QC) structure are analyzed and applied in a head-mounted display (HMD) system in this study. We adopt a hybrid simulated method to evaluate the light extraction efficiency (LEE) and far-field pattern in the air, and study the relationship between them. The simulation results show that OLEDs implanted with the QC structure can provide a collimated far-field pattern to increase the brightness. Using this 10-fold QC arrangement the maxima LEE of the OLEDs can be increased by 1.20 times. Compared with conventional OLEDs, the viewing angle of the OLED panel decreases from 120 degrees to 26 degrees with an improvement in the optical efficiency of the HMD system by 2.66 times. Moreover, the normalized on-axis intensity in the pupil of the eyepiece can be enlarged up to 3.95 times which suggests that the OLED panel can save 74.68% energy while achieving the same on-axis intensity as conventional OLEDs.

2.
Nano Lett ; 13(8): 3817-23, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23899318

RESUMO

Here we demonstrate that the photoactivity of Au-decorated TiO2 electrodes for photoelectrochemical water oxidation can be effectively enhanced in the entire UV-visible region from 300 to 800 nm by manipulating the shape of the decorated Au nanostructures. The samples were prepared by carefully depositing Au nanoparticles (NPs), Au nanorods (NRs), and a mixture of Au NPs and NRs on the surface of TiO2 nanowire arrays. As compared with bare TiO2, Au NP-decorated TiO2 nanowire electrodes exhibited significantly enhanced photoactivity in both the UV and visible regions. For Au NR-decorated TiO2 electrodes, the photoactivity enhancement was, however, observed in the visible region only, with the largest photocurrent generation achieved at 710 nm. Significantly, TiO2 nanowires deposited with a mixture of Au NPs and NRs showed enhanced photoactivity in the entire UV-visible region. Monochromatic incident photon-to-electron conversion efficiency measurements indicated that excitation of surface plasmon resonance of Au is responsible for the enhanced photoactivity of Au nanostructure-decorated TiO2 nanowires. Photovoltage experiment showed that the enhanced photoactivity of Au NP-decorated TiO2 in the UV region was attributable to the effective surface passivation of Au NPs. Furthermore, 3D finite-difference time domain simulation was performed to investigate the electrical field amplification at the interface between Au nanostructures and TiO2 upon SPR excitation. The results suggested that the enhanced photoactivity of Au NP-decorated TiO2 in the UV region was partially due to the increased optical absorption of TiO2 associated with SPR electrical field amplification. The current study could provide a new paradigm for designing plasmonic metal/semiconductor composite systems to effectively harvest the entire UV-visible light for solar fuel production.

3.
Appl Opt ; 52(7): 1358-67, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23458786

RESUMO

In this paper, we propose a method to analyze the light extraction efficiency (LEE) enhancement of a nanopatterned sapphire substrates (NPSS) light-emitting diode (LED) by comparing wave optics software with ray optics software. Finite-difference time-domain (FDTD) simulations represent the wave optics software and Light Tools (LTs) simulations represent the ray optics software. First, we find the trends of and an optimal solution for the LEE enhancement when the 2D-FDTD simulations are used to save on simulation time and computational memory. The rigorous coupled-wave analysis method is utilized to explain the trend we get from the 2D-FDTD algorithm. The optimal solution is then applied in 3D-FDTD and LTs simulations. The results are similar and the difference in LEE enhancement between the two simulations does not exceed 8.5% in the small LED chip area. More than 10(4) times computational memory is saved during the LTs simulation in comparison to the 3D-FDTD simulation. Moreover, LEE enhancement from the side of the LED can be obtained in the LTs simulation. An actual-size NPSS LED is simulated using the LTs. The results show a more than 307% improvement in the total LEE enhancement of the NPSS LED with the optimal solution compared to the conventional LED.

4.
Opt Express ; 21(2): 1804-11, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23389164

RESUMO

We establish experimental and numerical evidence that the refractive index sensitivities of various subwavelength plasmonic sensors obey a simple universal scaling relation that the sensitivities linearly increase with λm/neff (where λm is the resonant wavelengths and neff is the effective refractive index of the environment) and exhibit a slope equal to 1 instead of 2 predicted theoretically. The universal scaling relation is independent of the geometrical structures or contributions of multipolar resonances of individual metal structures (i.e. plasmonic atoms). It is also independent of spatial distributions or field-enhancements of electromagnetic hot spots in coupled metal structures (i.e. plasmonic molecules). The universal scaling relation reveals the fundamental standing wave resonances for all plasmonic atoms and the predominant near-field electric couplings for most plasmonic molecules. The established universal relation also helps to exclude some magnetically coupled plasmonic molecules for practical applications due to their reduced sensitivities.


Assuntos
Modelos Teóricos , Ressonância de Plasmônio de Superfície/instrumentação , Transdutores , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação
5.
Opt Express ; 20(3): 2887-94, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-22330526

RESUMO

We report extensive numerical studies on plasmonic dimers of different configurations and find that their coupling effects can be categorized into three types of phenomena. First, like ordinary mechanical systems, the plasmonic dimers can exhibit positive couplings that show anti-crossing behavior. Second, they can also be arranged to exhibit negative couplings that display opposite trends in resonant frequency shifts. Third, when there are surface currents in proximity to each other, the resonance frequencies of the dimers exhibit unusual redshifts that do not have any analogies in conventional systems. Our work suggests that in addition to the well-known electric and magnetic dipolar interactions, contributions from the inductance of displacement currents in the near field cannot be ignored. Overall, asymmetric plasmonic dimers exhibit better sensitivities than the symmetric counterparts and our extensive studies also enable us to identify the plasmonic dimer with the highest sensing capabilities.


Assuntos
Modelos Teóricos , Ressonância de Plasmônio de Superfície/métodos , Simulação por Computador , Luz , Espalhamento de Radiação
6.
Opt Express ; 14(8): 3263-72, 2006 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19516468

RESUMO

Transmission properties of the periodic dielectric waveguide (PDWG) formed by aligning a sequence of dielectric cylinders in air are investigated theoretically. Unlike photonic crystal waveguides (PCWs), light confinement in a PDWG is due to total internal reflection. Besides, the dispersion relation of the guided modes is strongly influenced by the dielectric periodicity along the waveguide. The band structure for the guided modes is calculated using a finite-difference time-domain (FDTD) method. The first band is used for guiding light, which makes PDWG single mode. Transmission is calculated using the multiple scattering method for various S shaped PDWGs, each containing two opposite bends. When PDWG operates in appropriate frequency ranges, high transmission (above 90%) is observed, even if the radius of curvature of the bends is reduced to three wavelengths. This feature indicates that the guiding ability of PDWG can be made better than the conventional waveguide when used in an optical circuit. In addition, PDWG has the advantage that it can be bent to any arbitrary shape while still preserves the high transmission, avoiding the geometric restriction that PCWs are subject to.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA