Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Filtros adicionais











Intervalo de ano
1.
Bioorg Med Chem ; 27(13): 2871-2882, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31126820

RESUMO

Betulinic acid (BA), a pentacyclic triterpenoid, exhibits broad spectrum antiproliferative activity, but generally with only modest potency. To improve BA's pharmacological properties, fluorine was introduced as a single atom at C-2, creating two diastereomers, or in a trifluoromethyl group at C-3. We evaluated the impact of these groups on antiproliferative activity against five human tumor cell lines. A racemic 2-F-BA (compound 6) showed significantly improved antiproliferative activity, while each diastereomer exhibited similar effects. We also demonstrated that 2-F-BA is a topoisomerase (Topo) I and IIα dual inhibitor in cell-based and cell-free assays. A hypothetical mode of binding to the Topo I-DNA suggested a difference between the hydrogen bonding of BA and 2-F-BA to DNA, which may account for the difference in bioactivity against Topo I.

2.
Int J Cancer ; 145(9): 2478-2487, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30963568

RESUMO

The long noncoding RNA HOTAIR plays significant roles in promoting cancer metastasis. However, how it conveys an invasive advantage in cancer cells is not clear. Here we identify the chondroitin sulfotransferase CHST15 (GalNAc4S-6ST) as a novel HOX transcript antisense intergenic RNA (HOTAIR) target gene using RNA profiling and show that CHST15 is required for HOTAIR-mediated invasiveness in breast cancer cells. CHST15 catalyzes sulfation of the C6 hydroxyl group of the N-acetyl galactosamine 4-sulfate moiety in chondroitin sulfate to form the 4,6-disulfated chondroitin sulfate variant known as the CS-E isoform. We show that HOTAIR is necessary and sufficient for CHST15 transcript expression. Inhibition of CHST15 by RNA interference abolished cell invasion promoted by HOTAIR but not on HOTAIR-mediated migratory activity. Conversely, reconstitution of CHST15 expression rescued the invasive activity of HOTAIR-depleted cells. In corroboration with this mechanism, blocking cell surface chondroitin sulfate using a pan-CS antibody or an antibody specifically recognizes the CS-E isoform significantly suppressed HOTAIR-induced invasion. Inhibition of CHST15 compromised tumorigenesis and metastasis in orthotopic breast cancer xenograft models. Furthermore, the expression of HOTAIR closely correlated with the level of CHST15 protein in primary as well as metastatic tumor lesions. Our results demonstrate a novel mechanism underlying the function of HOTAIR in tumor progression through programming the context of cell surface glycosaminoglycans. Our results further establish that the invasive and migratory activities downstream of HOTAIR are distinctly regulated, whereby CHST15 preferentially controls the arm of invasiveness. Thus, the HOTAIR-CHST15 axis may provide a new avenue toward novel therapeutic strategies and prognosis biomarkers for advanced breast cancer.

3.
Int J Mol Sci ; 20(1)2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30583467

RESUMO

Heme oxygenase (HO)-1 is known to metabolize heme into biliverdin/bilirubin, carbon monoxide, and ferrous iron, and it has been suggested to demonstrate cytoprotective effects against various stress-related conditions. HO-1 is commonly regarded as a survival molecule, exerting an important role in cancer progression and its inhibition is considered beneficial in a number of cancers. However, increasing studies have shown a dark side of HO-1, in which HO-1 acts as a critical mediator in ferroptosis induction and plays a causative factor for the progression of several diseases. Ferroptosis is a newly identified iron- and lipid peroxidation-dependent cell death. The critical role of HO-1 in heme metabolism makes it an important candidate to mediate protective or detrimental effects via ferroptosis induction. This review summarizes the current understanding on the regulatory mechanisms of HO-1 in ferroptosis. The amount of cellular iron and reactive oxygen species (ROS) is the determinative momentum for the role of HO-1, in which excessive cellular iron and ROS tend to enforce HO-1 from a protective role to a perpetrator. Despite the dark side that is related to cell death, there is a prospective application of HO-1 to mediate ferroptosis for cancer therapy as a chemotherapeutic strategy against tumors.


Assuntos
Morte Celular , Heme Oxigenase-1/metabolismo , Heme/metabolismo , Neoplasias/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Tratamento Farmacológico , Humanos , Ferro/metabolismo , Peroxidação de Lipídeos , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Int J Oncol ; 52(1): 67-76, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29138806

RESUMO

Curcumin has been shown to exert potential antitumor activity in vitro and in vivo involved in multiple signaling pathways. However, the application of curcumin is still limited because of its poor hydrophilicity and low bio-availability. In the present study, we investigated the therapeutic effects of a novel and water soluble bis(hydroxymethyl) alkanoate curcuminoid derivative, MTH-3, on human breast adenocarcinoma MDA-MB-231 cells. This study investigated the effect of MTH-3 on cell viability, cell cycle and induction of autophagy and apoptosis in MDA-MB-231 cells. After 24-h treatment with MTH-3, a concentration-dependent decrease in MDA-MB-231 cell viability was observed, and the IC50 value was 5.37±1.22 µM. MTH-3 significantly triggered G2/M phase arrest and apoptosis in MDA-MB-231 cells. Within a 24-h treatment, MTH-3 decreased the CDK1 activity by decreasing CDK1 and cyclin B1 protein levels. MTH-3-induced apoptosis was further confirmed by morphological assessment and annexin V/PI staining assay. Induction of apoptosis caused by MTH-3 was accompanied by an apparent increase of DR3, DR5 and FADD and, as well as a marked decrease of Bcl-2 and Bcl-xL protein expression. MTH-3 also decreased the protein levels of Ero1, PDI, PERK and calnexin, as well as increased the expression of IRE1α, CHOP and Bip that consequently led to ER stress and MDA-MB-231 cell apoptosis. In addition, MTH-3-treated cells were involved in the autophagic process and cleavage of LC3B was observed. MTH-3 enhanced the protein levels of LC3B, Atg5, Atg7, Atg12, p62 and Beclin-1 in MDA-MB-231 cells. Finally, DNA microarray was carried out to investigate the level changes of gene expression modulated by MTH-3 in MDA-MB-231 cells. Taken together, our results suggest that MTH-3 might be a novel therapeutic agent for the treatment of triple-negative breast cancer in the near future.


Assuntos
Curcumina/análogos & derivados , Curcumina/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias de Mama Triplo Negativas/genética
5.
Cancer Lett ; 416: 124-137, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29274359

RESUMO

Ferroptosis is a form of oxidative cell death and has become a chemotherapeutic target for cancer treatment. BAY 11-7085 (BAY), which is a well-known IκBα inhibitor, suppressed viability in cancer cells via induction of ferroptotic death in an NF-κB-independent manner. Reactive oxygen species scavenging, relief of lipid peroxidation, replenishment of glutathione and thiol-containing agents, as well as iron chelation, rescued BAY-induced cell death. BAY upregulated a variety of Nrf2 target genes related to redox regulation, particularly heme oxygenase-1 (HO-1). Studies with specific inhibitors and shRNA interventions suggested that the hierarchy of induction is Nrf2-SLC7A11-HO-1. SLC7A11 inhibition by erastin, sulfasalazine, or shRNA interference sensitizes BAY-induced cell death. Overexperession of SLC7A11 attenuated BAY-inhibited cell viability. The ferroptotic process induced by hHO-1 overexpression further indicated that HO-1 is a key mediator of BAY-induced ferroptosis that operates through cellular redox regulation and iron accumulation. BAY causes compartmentalization of HO-1 into the nucleus and mitochondrion, and followed mitochondrial dysfunctions, leading to lysosome targeting for mitophagy. In this study, we first discovered that BAY induced ferroptosis via Nrf2-SLC7A11-HO-1 pathway and HO-1 is a key mediator by responding to the cellular redox status.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , Ferro/metabolismo , Nitrilos/farmacologia , Sulfonas/farmacologia , Células A549 , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células HEK293 , Heme Oxigenase-1/metabolismo , Humanos , Células MCF-7 , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução/efeitos dos fármacos , Interferência de RNA
6.
Eur J Med Chem ; 131: 141-151, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28319780

RESUMO

Novel bis(hydroxymethyl) alkanoate curcuminoid derivatives were designed, synthesized and screened for in vitro antiproliferative and in vivo antitumor activity. Selected new compound 9a and curcumin were further evaluated for inhibitory activity against ER+/PR+ breast cancer (MCF-7, T47D), HER 2+ breast cancer (SKBR3, BT474, and MDA-MB-457) and triple negative breast cancer (TNBC) (HS-578T, MDA-MB-157, and MDA-MB-468) cell lines. In addition, compound 9a was evaluated in the MDA-MB-231 xenograft nude mice model. Compound 9a exhibited greater inhibitory activity than curcumin against TNBC cells and also demonstrated significant inhibitory activity against doxorubicin-resistant MDA-MB-231 cells, with ten-fold higher potency than curcumin. Furthermore, when evaluated against the MDA-MB-231 xenograft nude mice model, compound 9a alone was ten-fold more potent than curcumin. Moreover, synergistic activity was observed when 9a was used in combination with doxorubicin against MDA-MB-231 breast cancer cells.


Assuntos
Antineoplásicos/farmacologia , Curcumina/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Curcumina/síntese química , Curcumina/química , Feminino , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Nus , Relação Estrutura-Atividade , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Am J Cancer Res ; 6(4): 747-63, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27186428

RESUMO

We investigated the anticancer potential of a new synthetic compound, 7-(3-fluorophenyl)-4-methylpyrido-[2,3-d]pyrimidin-5(8H)-one (MT3-037). We found that MT3-037 effectively decreased the cancer cell viability by inducing apoptosis. MT3-037 treatments led to cell cycle arrest at M phase, with a marked increase in both expression of cyclin B1 and cyclin-dependent kinase 1 (CDK1) as well as in CDK1 kinase activity. Key proteins that regulate mitotic spindle dynamics, including survivin, Aurora A/B kinases, and polo-like kinase 1 (PLK1), were activated in MT3-037-treated cells. MT3-037-induced apoptosis was accompanied by activation of a pro-apoptotic factor, FADD, and the inactivation of apoptosis inhibitors, Bcl-2 and Bcl-xL, resulting in the cleavage/activation of caspases. The activation of c-Jun N-terminal kinase (JNK) was associated with MT3-037-induced CDK1 and Aurora A/B activation and apoptosis. Immunofluorescence staining of tubulin indicated that MT3-037 altered tubulin networks in cancer cells. Moreover, an in vitro tubulin polymerization assay revealed that MT3-037 inhibited the tubulin polymerization by direct binding to tubulin. Molecular docking studies and binding site completion assays revealed that MT3-037 binds to the colchicine-binding site. Furthermore, MT3-037 significantly inhibited the tumor growth in both MDAMB-468 and Erlotinib-resistant MDA-MB-468 xenograft mouse models. In addition, MT3-037 inhibited the angiogenesis and disrupted the tube formation by human endothelial cells. Our study demonstrates that MT3-037 is a potential tubulin-disrupting agent for antitumor therapy.

8.
Biomedicine (Taipei) ; 6(1): 2, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26872811

RESUMO

Carcinogenesis is a complicated process that involves the deregulation of epigenetics resulting in cellular transformational events, such proliferation, differentiation, and metastasis. Epigenetic machinery changes the accessibility of chromatin to transcriptional regulation through DNA modification. The collaboration of epigenetics and gene transcriptional regulation creates a suitable microenvironment for cancer development, which is proved by the alternation in cell proliferation, differentiation, division, metabolism, DNA repair and movement. Therefore, the reverse of epigenetic dysfunction may provide a possible strategy and new therapeutic targets for cancer treatment. Many dietary components such as sulforaphane and epigallocatechin- 3-gallate have been demonstrated to exert chemopreventive influences, such as reducing tumor growth and enhancing cancer cell death. Anticancer mechanistic studies also indicated that dietary components could display the ability to reverse epigenetic deregulation in assorted tumors via reverting the adverse epigenetic regulation, including alternation of DNA methylation and histone modification, and modulation of microRNA expression. Therefore, dietary components as therapeutic agents on epigenetics becomes an attractive approach for cancer prevention and intervention at the moment. In this review, we summarize the recent discoveries and underlying mechanisms of the most common dietary components for cancer prevention via epigenetic regulation.

9.
Cancer Chemother Pharmacol ; 75(6): 1303-15, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25947085

RESUMO

PURPOSE: To investigate the anticancer therapeutic potential of a new synthetic compound, 2-(3-hydroxyphenyl)-5-methylnaphthyridin-4-one (CSC-3436), on non-small cell lung cancer (NSCLC) cells. METHODS: Cell viability was determined by MTT assay. Cell cycle distribution was assessed by propidium iodide staining and subjected to flow cytometry analysis. Protein expression was detected by western blot analysis. Pharmacological inhibitors and shRNAs were applied to examine the possible pathways involved CSC-3436-inhibited viability of NSCLC cells. RESULTS: CSC-3436 decreased NSCLC cell viability by inducing apoptosis. In vivo and in vitro tubulin polymerization assays revealed that CSC-3463 caused tubulin depolymerization by directly binding to the colchicine-binding site. Furthermore, CSC-3436 caused the mitotic arrest with a marked activation of cyclin-dependent kinase 1 (CDK1) and increased the expression of phospho-Ser/Thr-Pro mitotic protein monoclonal 2. The CDK1 inhibitor, roscovitine, reversed the CSC-3436-induced upregulation of CDK1 activity as well as the mitotic arrest. DNA damage response kinases, including ataxia telangiectasia mutated (ATM), ATM and Rad3-related, DNA-dependent protein kinase, checkpoint kinase 1, and checkpoint kinase 2, were phosphorylated and activated by CSC-3436. c-Jun N-terminal kinase was activated by CSC-3436 and involved in the regulation of mitotic arrest and apoptosis. CSC-3436-induced apoptosis was accompanied by the activation of pro-apoptotic factors FADD, TRADD, and RIP and the inactivation of anti-apoptotic proteins Bcl-2 and Bcl-xL, resulting in the cleavage and subsequent activation of caspases. CONCLUSIONS: Our results reveal the cellular events in which CSC-3436 induces tumor cell death and demonstrate that CSC-3436 is a potential tubulin-disrupting agent for antitumor therapy against NSCLC.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Quinases Ciclina-Dependentes/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Moduladores de Tubulina/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Quinase CDC2 , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Quinase do Ponto de Checagem 2/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neoplasias Pulmonares/metabolismo , Mitose/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Tubulina (Proteína)/metabolismo , Proteína bcl-X/metabolismo
10.
J Exp Med ; 212(3): 319-32, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25711212

RESUMO

Glutamatergic systems play a critical role in cognitive functions and are known to be defective in Alzheimer's disease (AD) patients. Previous literature has indicated that glial glutamate transporter EAAT2 plays an essential role in cognitive functions and that loss of EAAT2 protein is a common phenomenon observed in AD patients and animal models. In the current study, we investigated whether restored EAAT2 protein and function could benefit cognitive functions and pathology in APPSw,Ind mice, an animal model of AD. A transgenic mouse approach via crossing EAAT2 transgenic mice with APPSw,Ind. mice and a pharmacological approach using a novel EAAT2 translational activator, LDN/OSU-0212320, were conducted. Findings from both approaches demonstrated that restored EAAT2 protein function significantly improved cognitive functions, restored synaptic integrity, and reduced amyloid plaques. Importantly, the observed benefits were sustained one month after compound treatment cessation, suggesting that EAAT2 is a potential disease modifier with therapeutic potential for AD.


Assuntos
Doença de Alzheimer/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Piridazinas/farmacologia , Piridinas/farmacologia , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Animais , Células Cultivadas , Cognição/efeitos dos fármacos , Cognição/fisiologia , Modelos Animais de Doenças , Transportador 2 de Aminoácido Excitatório/genética , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Placa Amiloide/genética , Placa Amiloide/metabolismo
11.
Eur J Med Chem ; 90: 775-87, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25528332

RESUMO

To develop new anticancer drug candidates from 2-arylnaphthyridin-4-one (AN), we have designed and synthesized a series of 3'-hydroxy and 6-hydroxy derivatives of AN. The results of cytotoxicity screening indicated that the replacement of the 3'-methoxy moiety on the C-ring phenyl group of AN (6a-e) with 3'-hydroxy (7a-e) made no significant effect on the inhibitory activity against HL-60, Hep3B and NCI-H460 cancer cell lines. On the other hand, replacing the 6-methoxy group on the A-ring of AN (6g-i) with a 6-hydroxy group (7g-i) resulted in reduced inhibitory activity against the above three cancer cell lines. Among the above-mentioned target compounds, 2-(3-hydroxyphenyl)-5-methyl-1,8-naphthyridin-4(1H)-one (7a) demonstrated the greatest potency and the best selectivity toward tumorigenic cancer cell lines. In a 7a preliminary mechanism of action study in Hep3B hepatoma cells, 7a showed the effects on microtubules followed by cell cycle arrest and sequentially led to apoptosis. In addition, a phosphate prodrug (11) of 7a exhibited significant antitumor activity when tested in a Hep3B xenograft nude mice model. Since compound 11 has demonstrated good development potential, it is recommended for further preclinical studies.


Assuntos
Antineoplásicos/farmacologia , Desenho de Drogas , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Naftiridinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HL-60 , Humanos , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Moleculares , Estrutura Molecular , Naftiridinas/síntese química , Naftiridinas/química , Relação Estrutura-Atividade
12.
Dev Cell ; 30(2): 224-37, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25073158

RESUMO

Posttranslational modifications of histones play fundamental roles in many biological functions. Specifically, histone H4-K20 methylation is critical for DNA synthesis and repair. However, little is known about how these functions are regulated by the upstream stimuli. Here, we identify a tyrosine phosphorylation site at Y72 of histone H4, which facilitates recruitment of histone methyltransferases (HMTases), SET8 and SUV4-20H, to enhance its K20 methylation, thereby promoting DNA synthesis and repair. Phosphorylation-defective histone H4 mutant is deficient in K20 methylation, leading to reduced DNA synthesis, delayed cell cycle progression, and decreased DNA repair ability. Disrupting the interaction between epidermal growth factor receptor (EGFR) and histone H4 by Y72 peptide significantly reduced tumor growth. Furthermore, EGFR expression clinically correlates with histone H4-Y72 phosphorylation, H4-K20 monomethylation, and the Ki-67 proliferation marker. These findings uncover a mechanism by which EGFR transduces signal to chromatin to regulate DNA synthesis and repair.


Assuntos
Replicação do DNA , Receptores ErbB/metabolismo , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Reparo de DNA por Recombinação , Animais , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Fosforilação , Tirosina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Med Chem ; 57(14): 6008-18, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25003995

RESUMO

Twelve novel 20-sulfonylamidine derivatives (9a-9l) of camptothecin (1) were synthesized via a Cu-catalyzed three-component reaction. They showed similar or superior cytotoxicity compared with that of irinotecan (3) against A-549, DU-145, KB, and multidrug-resistant (MDR) KBvin tumor cell lines. Compound 9a demonstrated better cytotoxicity against MDR cells compared with that of 1 and 3. Mechanistically, 9a induced significant DNA damage by selectively inhibiting Topoisomerase (Topo) I and activating the ATM/Chk related DNA damage-response pathway. In xenograft models, 9a demonstrated significant activity without overt adverse effects at 5 and 10 mg/kg, comparable to 3 at 100 mg/kg. Notably, 9a at 300 mg/kg (i.p.) showed no overt toxicity in contrast to 1 (LD50 56.2 mg/kg, i.p.) and 3 (LD50 177.5 mg/kg, i.p.). Intact 9a inhibited Topo I activity in a cell-free assay in a manner similar to that of 1, confirming that 9a is a new class of Topo I inhibitor. 20-Sulfonylamidine 1-derivative 9a merits development as an anticancer clinical trial candidate.


Assuntos
Amidinas/química , Antineoplásicos/farmacologia , Camptotecina/análogos & derivados , DNA Topoisomerases Tipo I/metabolismo , Desenho de Drogas , Neoplasias Experimentais/tratamento farmacológico , Sulfonamidas/química , Inibidores da Topoisomerase I/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Camptotecina/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HCT116 , Humanos , Células KB , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Conformação Molecular , Neoplasias Experimentais/patologia , Relação Estrutura-Atividade , Inibidores da Topoisomerase I/síntese química , Inibidores da Topoisomerase I/química
14.
Br J Pharmacol ; 171(17): 4010-25, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24697523

RESUMO

BACKGROUND AND PURPOSE: YC-1 exhibits potent anticancer activity via numerous actions in many cancer cell lines. Hence, we investigated the in vivo antitumour efficacy of YC-1 in an MDA-MB-468 xenograft model and elucidated the mechanism of down-regulation of enhancer of zeste homology 2 (EZH2) by YC-1 in breast cancer cells. EXPERIMENTAL APPROACH: In YC-1-treated breast cancer cells and tumour specimens from YC-1-treated MDA-MB-468 xenografts, EZH2 expression was analysed by Western blotting. Pharmacological inhibitors and short hairpin RNA-mediated knockdown were applied to identify possible signalling pathways involved in EZH2 down-regulation by YC-1. KEY RESULTS: YC-1 reduced the viability of breast cancer cells and tumour growth in MDA-MB-468 xenografts. In breast cancer cells, YC-1 down-regulated EZH2 expression in a concentration- and time-dependent manner. Depletion of EZH2 reduced the proliferation and susceptibility of breast cancer cells to YC-1-induced apoptosis. EZH2 expression was suppressed in tumour specimens from YC-1-treated MDA-MB-468 xenograft mice. YC-1 enhanced both the degradation rate and ubiquitination of EZH2. The down-regulation of EZH2 by YC-1 was associated with activation of PKA and Src-Raf-ERK-mediated signalling pathways. Furthermore, depletion of Casitas B-lineage lymphoma (c-Cbl), an E3 ubiquitin ligase, abolished YC-1-induced apoptosis and suppression of EZH2. YC-1 rapidly activated c-Cbl to induce signalling associated with ERK and EZH2. CONCLUSION AND IMPLICATIONS: We discovered that YC-1 induces apoptosis and inhibits tumour growth of breast cancer cells via down-regulation of EZH2 by activating c-Cbl and ERK. These data suggest that YC-1 is a potential anticancer drug candidate for triple-negative breast cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Indazóis/farmacologia , Complexo Repressor Polycomb 2/deficiência , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Animais , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Proteína Potenciadora do Homólogo 2 de Zeste , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Indazóis/química , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Complexo Repressor Polycomb 2/biossíntese , Complexo Repressor Polycomb 2/genética , Relação Estrutura-Atividade
15.
J Clin Invest ; 124(3): 1255-67, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24569372

RESUMO

Glial glutamate transporter EAAT2 plays a major role in glutamate clearance in synaptic clefts. Several lines of evidence indicate that strategies designed to increase EAAT2 expression have potential for preventing excitotoxicity, which contributes to neuronal injury and death in neurodegenerative diseases. We previously discovered several classes of compounds that can increase EAAT2 expression through translational activation. Here, we present efficacy studies of the compound LDN/OSU-0212320, which is a pyridazine derivative from one of our lead series. In a murine model, LDN/OSU-0212320 had good potency, adequate pharmacokinetic properties, no observed toxicity at the doses examined, and low side effect/toxicity potential. Additionally, LDN/OSU-0212320 protected cultured neurons from glutamate-mediated excitotoxic injury and death via EAAT2 activation. Importantly, LDN/OSU-0212320 markedly delayed motor function decline and extended lifespan in an animal model of amyotrophic lateral sclerosis (ALS). We also found that LDN/OSU-0212320 substantially reduced mortality, neuronal death, and spontaneous recurrent seizures in a pilocarpine-induced temporal lobe epilepsy model. Moreover, our study demonstrated that LDN/OSU-0212320 treatment results in activation of PKC and subsequent Y-box-binding protein 1 (YB-1) activation, which regulates activation of EAAT2 translation. Our data indicate that the use of small molecules to enhance EAAT2 translation may be a therapeutic strategy for the treatment of neurodegenerative diseases.


Assuntos
Transportador 2 de Aminoácido Excitatório/genética , Fármacos Neuroprotetores/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Piridazinas/farmacologia , Piridinas/farmacologia , Esclerose Amiotrófica Lateral/tratamento farmacológico , Esclerose Amiotrófica Lateral/enzimologia , Esclerose Amiotrófica Lateral/patologia , Animais , Células do Corno Anterior/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Linhagem Celular , Técnicas de Cocultura , Ativação Enzimática/efeitos dos fármacos , Transportador 2 de Aminoácido Excitatório/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Mutação de Sentido Incorreto , Fármacos Neuroprotetores/farmacocinética , Pilocarpina , Proteína Quinase C/metabolismo , Piridazinas/farmacocinética , Piridinas/farmacocinética , Ratos , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Estado Epiléptico/patologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Distribuição Tecidual , Fatores de Transcrição/metabolismo
16.
Bioorg Med Chem Lett ; 21(19): 5774-7, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21875806

RESUMO

Excitatory amino acid transporter 2 (EAAT2) is the major glutamate transporter and functions to remove glutamate from synapses. A thiopyridazine derivative has been found to increase EAAT2 protein levels in astrocytes. A structure-activity relationship study revealed that several components of the molecule were required for activity, such as the thioether and pyridazine. Modification of the benzylthioether resulted in several derivatives (7-13, 7-15 and 7-17) that enhanced EAAT2 levels by >6-fold at concentrations < 5 µM after 24h. In addition, one of the derivatives (7-22) enhanced EAAT2 levels 3.5-3.9-fold after 24h with an EC(50) of 0.5 µM.


Assuntos
Transportador 2 de Aminoácido Excitatório/agonistas , Piridazinas/síntese química , Piridazinas/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Transporte Biológico , Células Cultivadas , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Transportador 2 de Aminoácido Excitatório/metabolismo , Glutamatos/metabolismo , Piridazinas/química , Relação Estrutura-Atividade
17.
Biochem Pharmacol ; 81(2): 269-78, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20965153

RESUMO

A selective phospholipase D (PLD) inhibitor 5-fluoro-2-indolyl des-chlorohalopemide (FIPI) inhibited the O(2)(-) generation and cell migration but not degranulation in formyl-Met-Leu-Phe (fMLP)-stimulated rat neutrophils. A novel benzyl indazole compound 2-benzyl-3-(4-hydroxymethylphenyl)indazole (CHS-111), which inhibited O(2)(-) generation and cell migration, also reduced the fMLP- but not phorbol ester-stimulated PLD activity (IC(50) 3.9±1.2µM). CHS-111 inhibited the interaction of PLD1 with ADP-ribosylation factor (Arf) 6 and Ras homology (Rho) A, and reduced the membrane recruitment of RhoA in fMLP-stimulated cells but not in GTPγS-stimulated cell-free system. CHS-111 reduced the cellular levels of GTP-bound RhoA, membrane recruitment of Rho-associated protein kinase 1 and the downstream myosin light chain 2 phosphorylation, and attenuated the interaction between phosphatidylinositol 4-phosphate 5-kinase (PIP5K) and Arf6, whereas it only slightly inhibited the guanine nucleotide exchange activity of human Dbs (DH/PH) protein and did not affect the arfaptin binding to Arf6. CHS-111 inhibited the interaction of RhoA with Vav, the membrane association and the phosphorylation of Vav. CHS-111 had no effect on the phosphorylation of Src family kinases (SFK) but attenuated the interaction of Vav with Lck, Hck, Fgr and Lyn. CHS-111 also inhibited the interaction of PLD1 with protein kinase C (PKC) α, ßI and ßII isoenzymes, and the phosphorylation of PLD1. These results indicate that inhibition of fMLP-stimulated PLD activity by CHS-111 is attributable to the blockade of RhoA activation via the interference with SFK-mediated Vav activation, attenuation of the interaction of Arf6 with PLD1 and PIP5K, and the activation of Ca(2+)-dependent PKC in rat neutrophils.


Assuntos
Indazóis/farmacologia , Neutrófilos/efeitos dos fármacos , Fosfolipase D/antagonistas & inibidores , Fosfolipase D/metabolismo , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Animais , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Degranulação Celular/efeitos dos fármacos , Movimento Celular , Domperidona/análogos & derivados , Domperidona/farmacologia , Ativação Enzimática , Indóis/farmacologia , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Fosfolipase D/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Transdução de Sinais , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
18.
Bioorg Med Chem ; 18(2): 597-604, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20056549

RESUMO

In the present study we have discovered compound 1, a benzo[1.3.2]dithiazolium ylide-based compound, as a new prototype dual inhibitor of cyclooxygenase (COX) and 5-lipoxygenase (5-LOX). Compound 1 was initially discovered as a COX-2 inhibitor, resulting indirectly from the COX-2 structure-based virtual screening that identified compound 2 as a virtual hit. Compounds 1 and 2 inhibited COX-1 and COX-2 in mouse macrophages with IC(50) in the range of 1.5-18.1microM. Both compounds 1 and 2 were also found to be potent inhibitors of human 5-LOX (IC(50)=1.22 and 0.47microM, respectively). Interestingly, compound 1 also had an inhibitory effect on tumor necrosis factor-alpha (TNF-alpha) production (IC(50)=0.44microM), which was not observed with compound 2. Docking studies suggested the (S)-enantiomer of 1 as the biologically active isomer that binds to COX-2. Being a cytokine-suppressive dual COX/5-LOX inhibitor, compound 1 may represent a useful lead structure for the development of advantageous new anti-inflammatory agents.


Assuntos
Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Lipoxigenase , Inibidores de Lipoxigenase/farmacologia , Nitrocompostos/farmacologia , Tiazóis/farmacologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Benzotiazóis , Linhagem Celular , Cristalografia por Raios X , Óxidos S-Cíclicos , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Descoberta de Drogas , Humanos , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/química , Camundongos , Modelos Moleculares , Estrutura Molecular , Nitrocompostos/síntese química , Nitrocompostos/química , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química , Fator de Necrose Tumoral alfa/biossíntese
19.
Eur J Pharmacol ; 615(1-3): 207-17, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19445920

RESUMO

In formyl-Met-Leu-Phe (fMLP)-stimulated rat neutrophils, 2-benzyl-3-(4-hydroxymethylphenyl)indazole (CHS-111) inhibited superoxide anion (O(2)(-)) generation, which was not mediated by scavenging the generated O(2)(-) or by a cytotoxic effect, and attenuated migration. CHS-111 had no effect on the arachidonic acid-induced NADPH oxidase activation or the GTPgammaS-stimulated Rac2 membrane translocation in cell-free systems, whereas it effectively attenuated the membrane recruitment of p40(phox), p47(phox) and p67(phox), phosphorylation of Ser residues in p47(phox), association between p47(phox) and p22(phox), and Rac activation in fMLP-stimulated neutrophils. Moreover, the phosphorylation and membrane recruitment of p21-activated kinase (PAK), PAK kinase activity and the interaction of PAK with p47(phox) were inhibited by CHS-111. CHS-111 effectively reduced Akt kinase activity and the association between Akt and p47(phox), moderately inhibited the membrane recruitment of Akt and phospho-PDK1, and slightly attenuated Akt (Thr308) phosphorylation, whereas it had no effect on Akt (Ser473) phosphorylation or p110gamma membrane translocation. The membrane recruitment of protein kinase C (PKC)-alpha, -betaI, -betaII, -delta and -zeta, PKC phosphorylation and PKC kinase activity was attenuated by CHS-111, whereas CHS-111 did not affect the phosphorylation of p38 mitogen-activated protein kinase (MAPK) or downstream MAPK-activated protein kinase-2. Higher concentrations of CHS-111 were required to decrease fMLP-stimulated intracellular free Ca(2+) concentration ([Ca(2+)](i)) elevation in the presence but not in the absence of extracellular Ca(2+), and to reduce cellular cyclic AMP but slightly increase cyclic GMP levels. Taken together, these results suggest that CHS-111 inhibits fMLP-stimulated O(2)(-) generation in rat neutrophils through the blockade of PAK, Akt and PKC signaling pathways.


Assuntos
Indazóis/farmacologia , Neutrófilos/efeitos dos fármacos , Proteína Quinase C-alfa/antagonistas & inibidores , Proteína Quinase C/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Superóxidos/metabolismo , Quinases Ativadas por p21/antagonistas & inibidores , Animais , Sistema Livre de Células/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , NADPH Oxidases/metabolismo , Neutrófilos/enzimologia , Fosforilação , Proteína Quinase C/metabolismo , Proteína Quinase C-alfa/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Quinases Ativadas por p21/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Eur J Pharmacol ; 607(1-3): 234-43, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19232341

RESUMO

Both A23187 and formyl-Met-Leu-Phe (fMLP) induced the release of arachidonic acid and the production of thromboxane B(2) and leukotriene B(4) from rat neutrophils that were inhibited by acetylshikonin in a concentration-dependent manner. Acetylshikonin blocked exogenous arachidonic acid-induced leukotriene B(4) and thromboxane B(2) production in neutrophils and inhibited the enzymatic activity of ram seminal vesicles cyclooxygenase and human recombinant 5-lipoxygenase, whereas it had no effect on cytosolic phospholipase A(2) activity, in cell-free systems. 3-Morpholinosydnonimine- and 13S-hydroperoxy-9Z,11E-octadecadienoic acid (13-HpODE)-mediated dihydrorhodamine 123 oxidation (to assess the lipid peroxide and peroxynitrite scavenging activity) was reduced by acetylshikonin. The membrane recruitment of cytosolic phospholipase A(2) was inhibited, but the phosphorylation of cytosolic phospholipase A(2) was enhanced, by acetylshikonin in the A23187-induced response. Acetylshikonin alone stimulated extracellular signal regulated kinase (ERK) phosphorylation and enhanced this response in cells stimulated with A23187 and fMLP. The phosphorylation of ERKs and cytosolic phospholipase A(2) was attenuated by U0126, a mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) inhibitor. Acetylshikonin facilitated both A23187- and fMLP-mediated translocation of 5-lipoxygenase to the membrane. Acetylshikonin attenuated both fMLP- and ionomycin-mediated [Ca(2+)](i) elevation. These results indicate that the inhibition of eicosanoid production by acetylshikonin is due to the attenuation of cytosolic phospholipase A(2) membrane recruitment via the decrease in [Ca(2+)](i) and to the blockade of cyclooxygenase and 5-lipoxygenase activity.


Assuntos
Antraquinonas/farmacologia , Anti-Inflamatórios/farmacologia , Leucotrieno B4/biossíntese , Tromboxano A2/biossíntese , Animais , Antraquinonas/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Araquidonato 5-Lipoxigenase/efeitos dos fármacos , Araquidonato 5-Lipoxigenase/metabolismo , Ácido Araquidônico/metabolismo , Calcimicina/farmacologia , Cálcio/metabolismo , Relação Dose-Resposta a Droga , Humanos , Masculino , Camundongos , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Fosfolipases A2/efeitos dos fármacos , Fosfolipases A2/metabolismo , Prostaglandina-Endoperóxido Sintases/efeitos dos fármacos , Prostaglandina-Endoperóxido Sintases/metabolismo , Coelhos , Ratos , Ratos Sprague-Dawley , Glândulas Seminais/efeitos dos fármacos , Glândulas Seminais/enzimologia , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA