Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Nano Lett ; 21(1): 716-722, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33301687


Free-standing, interconnected metallic nanowire networks with densities as low as 40 mg/cm3 have been achieved over centimeter-scale areas, using electrodeposition into polycarbonate membranes that have been ion-tracked at multiple angles. Networks of interconnected magnetic nanowires further provide an exciting platform to explore 3-dimensional nanomagnetism, where their structure, topology, and frustration may be used as additional degrees of freedom to tailor the materials properties. New magnetization reversal mechanisms in cobalt networks are captured by the first-order reversal curve method, which demonstrate the evolution from strong demagnetizing dipolar interactions to intersection-mediated domain wall pinning and propagation, and eventually to shape-anisotropy dominated magnetization reversal. These findings open up new possibilities for 3-dimensional integrated magnetic devices for memory, complex computation, and neuromorphics.

Sci Rep ; 5: 16190, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26536830


Atomic hydrogen exists ubiquitously in graphene materials made by chemical methods. Yet determining the effect of hydrogen on the electrochemical performance of graphene remains a significant challenge. Here we report the experimental observations of high rate capacity in hydrogen-treated 3-dimensional (3D) graphene nanofoam electrodes for lithium ion batteries. Structural and electronic characterization suggests that defect sites and hydrogen play synergistic roles in disrupting sp(2) graphene to facilitate fast lithium transport and reversible surface binding, as evidenced by the fast charge-transfer kinetics and increased capacitive contribution in hydrogen-treated 3D graphene. In concert with experiments, multiscale calculations reveal that defect complexes in graphene are prerequisite for low-temperature hydrogenation, and that the hydrogenation of defective or functionalized sites at strained domain boundaries plays a beneficial role in improving rate capacity by opening gaps to facilitate easier Li penetration. Additional reversible capacity is provided by enhanced lithium binding near hydrogen-terminated edge sites. These findings provide qualitative insights in helping the design of graphene-based materials for high-power electrodes.

Environ Sci Technol ; 47(3): 1745-52, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23289811


Defining chemical and mechanical alteration of wellbore cement by CO(2)-rich brines is important for predicting the long-term integrity of wellbores in geologic CO(2) environments. We reacted CO(2)-rich brines along a cement-caprock boundary at 60 °C and pCO(2) = 3 MPa using flow-through experiments. The results show that distinct reaction zones form in response to reactions with the brine over the 8-day experiment. Detailed characterization of the crystalline and amorphous phases, and the solution chemistry show that the zones can be modeled as preferential portlandite dissolution in the depleted layer, concurrent calcium silicate hydrate (CSH) alteration to an amorphous zeolite and Ca-carbonate precipitation in the carbonate layer, and carbonate dissolution in the amorphous layer. Chemical reaction altered the mechanical properties of the core lowering the average Young's moduli in the depleted, carbonate, and amorphous layers to approximately 75, 64, and 34% of the unaltered cement, respectively. The decreased elastic modulus of the altered cement reflects an increase in pore space through mineral dissolution and different moduli of the reaction products.

Dióxido de Carbono/química , Materiais de Construção/análise , Fenômenos Mecânicos , Sais/química , Carbono/química , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Nanotecnologia , Pós , Soluções , Difração de Raios X
Opt Express ; 15(11): 6727-33, 2007 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-19546982


We present a novel approach to enhance light emission in Si and demonstrate a sub-bandgap light emitting diode based on the introduction of point defects that enhance the radiative recombination rate. Ion implantation, pulsed laser melting and rapid thermal annealing were used to create a diode containing a self-interstitial-rich optically active region from which the zero-phonon emission line at 1218 nm originates.