Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Mais filtros

Base de dados
Intervalo de ano de publicação
Sci Adv ; 6(37)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32917691


We compare the numbers of vascular plant species in the three major tropical areas. The Afrotropical Region (Africa south of the Sahara Desert plus Madagascar), roughly equal in size to the Latin American Region (Mexico southward), has only 56,451 recorded species (about 170 being added annually), as compared with 118,308 recorded species (about 750 being added annually) in Latin America. Southeast Asia, only a quarter the size of the other two tropical areas, has approximately 50,000 recorded species, with an average of 364 being added annually. Thus, Tropical Asia is likely to be proportionately richest in plant diversity, and for biodiversity in general, for its size. In the animal groups we reviewed, the patterns of species diversity were mostly similar except for mammals and butterflies. Judged from these relationships, Latin America may be home to at least a third of global biodiversity.

AoB Plants ; 11(5): plz051, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31636882


Biological invasions are a defining feature of the Anthropocene, but the factors that determine the spatially uneven distribution of alien plant species are still poorly understood. Here, we present the first global analysis of the effects of biogeographic factors, the physical environment and socio-economy on the richness of naturalized and invasive alien plants. We used generalized linear mixed-effects models and variation partitioning to disentangle the relative importance of individual factors, and, more broadly, of biogeography, physical environment and socio-economy. As measures of the magnitude of permanent anthropogenic additions to the regional species pool and of species with negative environmental impacts, we calculated the relative richness of naturalized (= RRN) and invasive (= RRI) alien plant species numbers adjusted for the number of native species in 838 terrestrial regions. Socio-economic factors (per-capita gross domestic product (GDP), population density, proportion of agricultural land) were more important in explaining RRI (~50 % of the explained variation) than RRN (~40 %). Warm-temperate and (sub)tropical regions have higher RRN than tropical or cooler regions. We found that socio-economic pressures are more relevant for invasive than for naturalized species richness. The expectation that the southern hemisphere is more invaded than the northern hemisphere was confirmed only for RRN on islands, but not for mainland regions nor for RRI. On average, islands have ~6-fold RRN, and >3-fold RRI compared to mainland regions. Eighty-two islands (=26 % of all islands) harbour more naturalized alien than native plants. Our findings challenge the widely held expectation that socio-economic pressures are more relevant for plant naturalization than for invasive plants. To meet international biodiversity targets and halt the detrimental consequences of plant invasions, it is essential to disrupt the connection between socio-economic development and plant invasions by improving pathway management, early detection and rapid response.

Sci Data ; 6(1): 118, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31285431


The FLOTROP dataset contains numerous plant observations (around 340,000 occurrences) in northern tropical Africa (from the 5th to 25th parallel north) in open ecosystems (savannah and steppe). They were collected by multiple collectors between 1920 and 2012 and were managed by Philippe Daget. These observations are probably the most important and unique source of plant distribution over the Sahel area. The data are now available in the Global Biodiversity Information Facility, Tela Botanica website, and as maps in the African Plant Database. For the overall area involved, this dataset has increased by 40% the data available in the GBIF. For some countries between the 15th and 21st parallel north, the FLOTROP dataset has increased available occurrences 10-fold compared to the data existing in the GBIF.

Biodiversidade , Plantas/classificação , Clima Tropical , África , Bases de Dados Factuais , Ecossistema , Software
Ecology ; 100(1): e02542, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30341991


This dataset provides the Global Naturalized Alien Flora (GloNAF) database, version 1.2. GloNAF represents a data compendium on the occurrence and identity of naturalized alien vascular plant taxa across geographic regions (e.g. countries, states, provinces, districts, islands) around the globe. The dataset includes 13,939 taxa and covers 1,029 regions (including 381 islands). The dataset is based on 210 data sources. For each taxon-by-region combination, we provide information on whether the taxon is considered to be naturalized in the specific region (i.e. has established self-sustaining populations in the wild). Non-native taxa are marked as "alien", when it is not clear whether they are naturalized. To facilitate alignment with other plant databases, we provide for each taxon the name as given in the original data source and the standardized taxon and family names used by The Plant List Version 1.1 ( We provide an ESRI shapefile including polygons for each region and information on whether it is an island or a mainland region, the country and the Taxonomic Databases Working Group (TDWG) regions it is part of (TDWG levels 1-4). We also provide several variables that can be used to filter the data according to quality and completeness of alien taxon lists, which vary among the combinations of regions and data sources. A previous version of the GloNAF dataset (version 1.1) has already been used in several studies on, for example, historical spatial flows of taxa between continents and geographical patterns and determinants of naturalization across different taxonomic groups. We intend the updated and expanded GloNAF version presented here to be a global resource useful for studying plant invasions and changes in biodiversity from regional to global scales. We release these data into the public domain under a Creative Commons Zero license waiver ( When you use the data in your publication, we request that you cite this data paper. If GloNAF is a major part of the data analyzed in your study, you should consider inviting the GloNAF core team (see Metadata S1: Originators in the Overall project description) as collaborators. If you plan to use the GloNAF dataset, we encourage you to contact the GloNAF core team to check whether there have been recent updates of the dataset, and whether similar analyses are already ongoing.

Nature ; 525(7567): 100-3, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26287466


All around the globe, humans have greatly altered the abiotic and biotic environment with ever-increasing speed. One defining feature of the Anthropocene epoch is the erosion of biogeographical barriers by human-mediated dispersal of species into new regions, where they can naturalize and cause ecological, economic and social damage. So far, no comprehensive analysis of the global accumulation and exchange of alien plant species between continents has been performed, primarily because of a lack of data. Here we bridge this knowledge gap by using a unique global database on the occurrences of naturalized alien plant species in 481 mainland and 362 island regions. In total, 13,168 plant species, corresponding to 3.9% of the extant global vascular flora, or approximately the size of the native European flora, have become naturalized somewhere on the globe as a result of human activity. North America has accumulated the largest number of naturalized species, whereas the Pacific Islands show the fastest increase in species numbers with respect to their land area. Continents in the Northern Hemisphere have been the major donors of naturalized alien species to all other continents. Our results quantify for the first time the extent of plant naturalizations worldwide, and illustrate the urgent need for globally integrated efforts to control, manage and understand the spread of alien species.

Biodiversidade , Mapeamento Geográfico , Espécies Introduzidas/estatística & dados numéricos , Plantas , Bases de Dados Factuais , América do Norte , Ilhas do Pacífico , Filogeografia
PLoS One ; 8(3): e58971, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23527060


In tropical regions, most primary ecosystems have been replaced by mosaic landscapes in which species must cope with a large shift in the distribution of their habitat and associated food resources. Primates are particularly vulnerable to habitat modifications. Most species persist in small fragments surrounded by complex human-mediated matrices whose structure and connectivity may strongly influence their dispersal and feeding behavior. Behavioral plasticity appears to be a crucial parameter governing the ability of organisms to exploit the resources offered by new matrix habitats and thus to persist in fragmented habitats. In this study, we were interested in the dietary plasticity of the golden-crowned sifaka (Propithecus tattersalli), an endangered species of lemur, found only in the Daraina region in north-eastern Madagascar. We used a DNA-based approach combining the barcoding concept and Illumina next-generation sequencing to (i) describe the species diet across its entire range and (ii) evaluate the influence of landscape heterogeneity on diet diversity and composition. Faeces from 96 individuals were sampled across the entire species range and their contents were analyzed using the trnL metabarcoding approach. In parallel, we built a large DNA reference database based on a checklist of the plant species of the Daraina region. Our results suggest that golden-crowned sifakas exhibit remarkable dietary diversity with at least 130 plant species belonging to 80 genera and 49 different families. We highlighted an influence of both habitat type and openness on diet composition suggesting a high flexibility of foraging strategies. Moreover, we observed the presence of numerous cultivated and naturalized plants in the faeces of groups living in forest edge areas. Overall, our findings support our initial expectation that P. tattersalli is able to cope with the current level of alteration of the landscape and confirm our previous results on the distribution and the dispersal ability of this species.

Código de Barras de DNA Taxonômico , Dieta/classificação , Espécies em Perigo de Extinção , Comportamento Alimentar , Lemur , Animais , Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Meio Ambiente , Geografia , Plantas