Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-31669435

RESUMO

BACKGROUND: Food allergy (FA) affects an increasing proportion of children for reasons that remain obscure. Novel disease biomarkers and curative treatment options are strongly needed. OBJECTIVE: We sought to apply untargeted metabolomic profiling to identify pathogenic mechanisms and candidate disease biomarkers in patients with FA. METHODS: Mass spectrometry-based untargeted metabolomic profiling was performed on serum samples of children with either FA alone, asthma alone, or both FA and asthma, as well as healthy pediatric control subjects. RESULTS: In this pilot study patients with FA exhibited a disease-specific metabolomic signature compared with both control subjects and asthmatic patients. In particular, FA was uniquely associated with a marked decrease in sphingolipid levels, as well as levels of a number of other lipid metabolites, in the face of normal frequencies of circulating natural killer T cells. Specific comparison of patients with FA and asthmatic patients revealed differences in the microbiota-sensitive aromatic amino acid and secondary bile acid metabolism. Children with both FA and asthma exhibited a metabolomic profile that aligned with that of FA alone but not asthma. Among children with FA, the history of severe systemic reactions and the presence of multiple FAs were associated with changes in levels of tryptophan metabolites, eicosanoids, plasmalogens, and fatty acids. CONCLUSIONS: Children with FA have a disease-specific metabolomic profile that is informative of disease mechanisms and severity and that dominates in the presence of asthma. Lower levels of sphingolipids and ceramides and other metabolomic alterations observed in children with FA might reflect the interplay between an altered microbiota and immune cell subsets in the gut.

2.
Allergy ; 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31596517

RESUMO

BACKGROUND: Dedicator of cytokinesis 8 (DOCK8) deficiency is the main cause of the autosomal recessive hyper-IgE syndrome (HIES). We previously reported the selective loss of group 3 innate lymphoid cell (ILC) number and function in a Dock8-deficient mouse model. In this study, we sought to test whether DOCK8 is required for the function and maintenance of ILC subsets in humans. METHODS: Peripheral blood ILC1-3 subsets of 16 DOCK8-deficient patients recruited at the pretransplant stage, and seven patients with autosomal dominant (AD) HIES due to STAT3 mutations, were compared with those of healthy controls or post-transplant DOCK8-deficient patients (n = 12) by flow cytometry and real-time qPCR. Sorted total ILCs from DOCK8- or STAT3-mutant patients and healthy controls were assayed for survival, apoptosis, proliferation, and activation by IL-7, IL-23, and IL-12 by cell culture, flow cytometry, and phospho-flow assays. RESULTS: DOCK8-deficient but not STAT3-mutant patients exhibited a profound depletion of ILC3s, and to a lesser extent ILC2s, in their peripheral blood. DOCK8-deficient ILC1-3 subsets had defective proliferation, expressed lower levels of IL-7R, responded less to IL-7, IL-12, or IL-23 cytokines, and were more prone to apoptosis compared with those of healthy controls. CONCLUSION: DOCK8 regulates human ILC3 expansion and survival, and more globally ILC cytokine signaling and proliferation. DOCK8 deficiency leads to loss of ILC3 from peripheral blood. ILC3 deficiency may contribute to the susceptibility of DOCK8-deficient patients to infections.

3.
Artigo em Inglês | MEDLINE | ID: mdl-31629014

RESUMO

BACKGROUND: Mutations affecting DNA polymerases have been implicated in genomic instability and cancer development, but the mechanisms by which they can affect the immune system remain largely unexplored. OBJECTIVE: We sought to establish the role of DNA polymerase δ1 catalytic subunit (POLD1) as the cause of a primary immunodeficiency in an extended kindred. METHODS: We performed whole-exome and targeted gene sequencing, lymphocyte characterization, molecular and functional analyses of the DNA polymerase δ (Polδ) complex, and T- and B-cell antigen receptor repertoire analysis. RESULTS: We identified a missense mutation (c. 3178C>T; p.R1060C) in POLD1 in 3 related subjects who presented with recurrent, especially herpetic, infections and T-cell lymphopenia with impaired T-cell but not B-cell proliferation. The mutation destabilizes the Polδ complex, leading to ineffective recruitment of replication factor C to initiate DNA replication. Molecular dynamics simulation revealed that the R1060C mutation disrupts the intramolecular interaction between the POLD1 CysB motif and the catalytic domain and also between POLD1 and the Polδ subunit POLD2. The patients exhibited decreased numbers of naive CD4 and especially CD8 T cells in favor of effector memory subpopulations. This skewing was associated with oligoclonality and restricted T-cell receptor ß-chain V-J pairing in CD8+ but not CD4+ T cells, suggesting that POLD1R1060C differentially affects peripheral CD8+ T-cell expansion and possibly thymic selection. CONCLUSION: These results identify gene defects in POLD1 as a novel cause of T-cell immunodeficiency.

4.
Clin Exp Allergy ; 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31505066

RESUMO

The Th2 cytokines interleukin 4 (IL-4) and IL-13 and the heterodimeric IL-4 receptor (IL-4R) complexes that they interact with play a key role in the pathogenesis of allergic disorders. Dupilumab is a humanized IgG4 monoclonal antibody that targets the IL-4 receptor alpha chain (IL-4Rα), common to both IL-4R complexes: type 1 (IL-4Rα/γc; IL-4 specific) and type 2 (IL-4Rα/IL-13Rα1; IL-4 and IL-13 specific). In this review, we detail the current state of knowledge of the different signalling pathways coupled to the IL-4R complexes and examine the possible mechanisms of Dupilumab action and survey its clinical efficacy in different allergic disorders. The development of Dupilumab and the widening spectrum of its clinical applications is relevant to the current emphasis on precision medicine approaches to the blockade of pathways involved in allergic diseases.

5.
J Clin Immunol ; 39(7): 623-640, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31478130

RESUMO

Regulatory T (Treg) cells expressing the transcription factor forkhead box P3 (Foxp3) play a requisite role in the maintenance of immunological homeostasis and prevention of peripheral self-tolerance breakdown. Although Foxp3 by itself is neither necessary nor sufficient to specify many aspects of the Treg cell phenotype, its sustained expression in Treg cells is indispensable for their phenotypic stability, metabolic fitness, and regulatory function. In this review, we summarize recent advances in Treg cell biology, with a particular emphasis on the role of Foxp3 as a transcriptional modulator and metabolic gatekeeper essential to an effective immune regulatory response. We discuss these findings in the context of human inborn errors of immune dysregulation, with a focus on FOXP3 mutations, leading to Treg cell deficiency. We also highlight emerging concepts of therapeutic Treg cell reprogramming to restore tolerance in the settings of immune dysregulatory disorders.

6.
Nat Immunol ; 20(9): 1208-1219, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31384057

RESUMO

Regulatory T cells (Treg cells) deficient in the transcription factor Foxp3 lack suppressor function and manifest an effector T (Teff) cell-like phenotype. We demonstrate that Foxp3 deficiency dysregulates metabolic checkpoint kinase mammalian target of rapamycin (mTOR) complex 2 (mTORC2) signaling and gives rise to augmented aerobic glycolysis and oxidative phosphorylation. Specific deletion of the mTORC2 adaptor gene Rictor in Foxp3-deficient Treg cells ameliorated disease in a Foxo1 transcription factor-dependent manner. Rictor deficiency re-established a subset of Treg cell genetic circuits and suppressed the Teff cell-like glycolytic and respiratory programs, which contributed to immune dysregulation. Treatment of Treg cells from patients with FOXP3 deficiency with mTOR inhibitors similarly antagonized their Teff cell-like program and restored suppressive function. Thus, regulatory function can be re-established in Foxp3-deficient Treg cells by targeting their metabolic pathways, providing opportunities to restore tolerance in Treg cell disorders.


Assuntos
Reprogramação Celular/imunologia , Fatores de Transcrição Forkhead/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Linfócitos T Reguladores/imunologia , Animais , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Glicólise/fisiologia , Humanos , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação Oxidativa , Transdução de Sinais , Linfócitos T Reguladores/citologia
8.
Circulation ; 140(10): 846-863, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31266349

RESUMO

BACKGROUND: Transplantation is the treatment of choice for many patients with end-stage organ disease. Despite advances in immunosuppression, long-term outcomes remain suboptimal, hampered by drug toxicity and immune-mediated injury, the leading cause of late graft loss. The development of therapies that promote regulation while suppressing effector immunity is imperative to improve graft survival and minimize conventional immunosuppression. Notch signaling is a highly conserved pathway pivotal to T-cell differentiation and function, rendering it a target of interest in efforts to manipulate T cell-mediated immunity. METHODS: We investigated the pattern of Notch-1 expression in effector and regulatory T cells (Tregs) in both murine and human recipients of a solid-organ transplant. Using a selective human anti-Notch-1 antibody (aNotch-1), we examined the effect of Notch-1 receptor inhibition in full major histocompatibility complex-mismatch murine cardiac and lung transplant models, and in a humanized skin transplant model. On the basis of our findings, we further used a genetic approach to investigate the effect of selective Notch-1 inhibition in Tregs. RESULTS: We observed an increased proportion of Tregs expressing surface and intracellular (activated) Notch-1 in comparison with conventional T cells, both in mice with transplants and in the peripheral blood of patients with transplants. In the murine cardiac transplant model, peritransplant administration of aNotch-1 (days 0, 2, 4, 6, 8, and 10) significantly prolonged allograft survival in comparison with immunoglobulin G-treated controls. Similarly, aNotch-1 treatment improved both histological and functional outcomes in the murine lung transplant model. The use of aNotch-1 resulted in a reduced proportion of both splenic and intragraft conventional T cells, while increasing the proportion of Tregs. Furthermore, Tregs isolated from aNotch-1-treated mice showed enhanced suppressive function on a per-cell basis, confirmed with selective Notch-1 deletion in Tregs (Foxp3EGFPCreNotch1fl/fl). Notch-1 blockade inhibited the mammalian target of rapamycin pathway and increased the phosphorylation of STAT5 (signal transducer and activator of transcription 5) in murine Tregs. Notch-1low Tregs isolated from human peripheral blood exhibited more potent suppressive capacity than Notch-1high Tregs. Last, the combination of aNotch-1 with costimulation blockade induced long-term tolerance in a cardiac transplant model, and this tolerance was dependent on CTLA-4 (cytotoxic T-lymphocyte-associated antigen-4) signaling. CONCLUSIONS: Our data reveal a promising, clinically relevant approach for immune modulation in transplantation by selectively targeting Notch-1.

9.
Curr Opin Immunol ; 60: 141-147, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31302570

RESUMO

The steep rise in the incidence and prevalence of food allergy (FA) in the last few decades have focused attention of environmental mechanisms which act to promote disease, chief among which is the microbiome. Recent studies have now established the presence of pathogenic dysbiosis in FA that could be precipitated by a variety of environmental insults, including among others antibiotic usage and mode of delivery, that act to subvert the immune regulatory response that enforce tolerance to dietary antigens. A key attribute of this dysbiosis is the loss of Clostridial bacterial species that act to promote the formation of food allergen-specific nascent regulatory T cells in the gut. Significantly, different immunoprotective commensal bacteria, including members of the Clostridiales and Bacteroidales orders act to induce the transcription factor RORγt in nascent Treg cells via an upstream MyD88-dependent mechanism to promote tolerance to dietary antigens. Activation of this axis is disrupted by the dysbiosis, and can be restored by treatment with therapeutic microbiota. These findings highlight the potential for novel microbiota-based approaches to the prevention and treatment of the FA epidemic.

10.
Nat Med ; 25(7): 1164-1174, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31235962

RESUMO

The role of dysbiosis in food allergy (FA) remains unclear. We found that dysbiotic fecal microbiota in FA infants evolved compositionally over time and failed to protect against FA in mice. Infants and mice with FA had decreased IgA and increased IgE binding to fecal bacteria, indicative of a broader breakdown of oral tolerance than hitherto appreciated. Therapy with Clostridiales species impacted by dysbiosis, either as a consortium or as monotherapy with Subdoligranulum variabile, suppressed FA in mice as did a separate immunomodulatory Bacteroidales consortium. Bacteriotherapy induced expression by regulatory T (Treg) cells of the transcription factor ROR-γt in a MyD88-dependent manner, which was deficient in FA infants and mice and ineffectively induced by their microbiota. Deletion of Myd88 or Rorc in Treg cells abrogated protection by bacteriotherapy. Thus, commensals activate a MyD88/ROR-γt pathway in nascent Treg cells to protect against FA, while dysbiosis impairs this regulatory response to promote disease.


Assuntos
Hipersensibilidade Alimentar/terapia , Microbioma Gastrointestinal/imunologia , Fator 88 de Diferenciação Mieloide/fisiologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/fisiologia , Linfócitos T Reguladores/fisiologia , Animais , Bacteroides , Clostridiales , Disbiose/imunologia , Fezes/microbiologia , Hipersensibilidade Alimentar/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Transdução de Sinais
11.
J Allergy Clin Immunol Pract ; 7(8): 2790-2800.e15, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31238161

RESUMO

BACKGROUND: LPS-responsive beige-like anchor (LRBA) deficiency presents with susceptibility to infections, autoimmunity, and lymphoproliferation. The long-term efficacy of cytotoxic T-lymphocyte-associated antigen 4-immunoglobulin (abatacept) as targeted therapy for its immune dysregulatory features remains to be established. OBJECTIVE: To determine the clinical and immunologic features of LRBA deficiency and long-term efficacy of abatacept treatment in controlling the different disease manifestations. METHODS: Twenty-two LRBA-deficient patients were recruited from different immunology centers and followed prospectively. Eighteen patients on abatacept were evaluated every 3 months for long-term clinical and immunologic responses. LRBA expression, lymphocyte subpopulations, and circulating T follicular helper cells were determined by flow cytometry. RESULTS: The mean age of the patients was 13.4 ± 7.9 years, and the follow-up period was 3.4 ± 2.3 years. Recurrent infections (n = 19 [86.4%]), immune dysregulation (n = 18 [81.8%]), and lymphoproliferation (n = 16 [72.7%]) were common clinical features. The long-term benefits of abatacept in 16 patients were demonstrated by complete control of lymphoproliferation and chronic diarrhea followed by immune dysregulation, most notably autoimmune cytopenias. Weekly or every other week administration of abatacept gave better disease control compared with every 4 weeks. There were no serious side effects related to the abatacept therapy. Circulating T follicular helper cell frequencies were found to be a reliable biomarker of disease activity, which decreased on abatacept therapy in most subjects. However, high circulating T follicular helper cell frequencies persisted in 2 patients who had a more severe disease phenotype that was relatively resistant to abatacept therapy. CONCLUSIONS: Long-term abatacept therapy is effective in most patients with LRBA deficiency.

13.
J Allergy Clin Immunol ; 143(3): 894-913, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30639346

RESUMO

Atopic dermatitis (AD) affects up to 20% of children worldwide and is an increasing public health problem, particularly in developed countries. Although AD in infants and young children can resolve, there is a well-recognized increased risk of sequential progression from AD to other atopic diseases, including food allergy (FA), allergic rhinitis, allergic asthma, and allergic rhinoconjunctivitis, a process referred to as the atopic march. The mechanisms underlying the development of AD and subsequent progression to other atopic comorbidities, particularly FA, are incompletely understood and the subject of intense investigation. Other major research objectives are the development of effective strategies to prevent AD and FA, as well as therapeutic interventions to inhibit the atopic march. In 2017, the Division of Allergy, Immunology, and Transplantation of the National Institute of Allergy and Infectious Diseases sponsored a workshop to discuss current understanding and important advances in these research areas and to identify gaps in knowledge and future research directions. International and national experts in the field were joined by representatives from several National Institutes of Health institutes. Summaries of workshop presentations, key conclusions, and recommendations are presented herein.

14.
J Clin Immunol ; 39(1): 37-44, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30543054

RESUMO

PURPOSE: Human signal transducer and activator of transcription 1 (STAT1) gain-of-function (GOF) mutations present with a broad range of manifestations ranging from chronic mucocutaneous candidiasis and autoimmunity to combined immunodeficiency (CID). So far, there is very limited experience with hematopoietic stem cell transplantation (HSCT) as a therapeutic modality in this disorder. Here, we describe two patients with heterozygous STAT1 GOF mutations mimicking CID who were treated with HSCT. METHODS: Data on the HSC sources, conditioning regimen, graft-versus-host disease (GvHD) and antimicrobial prophylaxis, and the post-transplant course including engraftment, GvHD, transplant-related complications, infections, chimerism, and survival were evaluated. Pre- and post-transplant immunological studies included enumeration of circulating interferon gamma (IFN-γ)- and interleukin 17 (IL-17)-expressing CD4+ T cells and analysis of IFN-ß-induced STAT1 phosphorylation in patient 1 (P1)'s T cells. RESULTS: P1 was transplanted with cord blood from an HLA-identical sibling, and P2 with bone marrow from a fully matched unrelated donor using a reduced toxicity conditioning regimen. While P1 completely recovered from her disease, P2 suffered from systemic CMV disease and secondary graft failure and died due to severe pulmonary involvement and hemorrhage. The dysregulated IFN-γ production, suppressed IL-17 response, and enhanced STAT1 phosphorylation previously found in the CD4+ T cells of P1 were normalized following transplantation. CONCLUSION: HSCT could be an alternative and curative therapeutic option for selected STAT1 GOF mutant patients with progressive life-threatening disease unresponsive to conventional therapy. Morbidity and mortality-causing complications included secondary graft failure, infections, and bleeding.


Assuntos
Mutação com Ganho de Função/genética , Doença Enxerto-Hospedeiro/genética , Fator de Transcrição STAT1/genética , Autoimunidade/genética , Linfócitos T CD4-Positivos/metabolismo , Pré-Escolar , Feminino , Transplante de Células-Tronco Hematopoéticas/métodos , Heterozigoto , Humanos , Masculino , Condicionamento Pré-Transplante/métodos
16.
J Allergy Clin Immunol ; 142(4): 1243-1256.e17, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29627423

RESUMO

BACKGROUND: Exposure to traffic-related particulate matter promotes asthma and allergic diseases. However, the precise cellular and molecular mechanisms by which particulate matter exposure acts to mediate these effects remain unclear. OBJECTIVE: We sought to elucidate the cellular targets and signaling pathways critical for augmentation of allergic airway inflammation induced by ambient ultrafine particles (UFP). METHODS: We used in vitro cell-culture assays with lung-derived antigen-presenting cells and allergen-specific T cells and in vivo mouse models of allergic airway inflammation with myeloid lineage-specific gene deletions, cellular reconstitution approaches, and antibody inhibition studies. RESULTS: We identified lung alveolar macrophages (AM) as the key cellular target of UFP in promoting airway inflammation. Aryl hydrocarbon receptor-dependent induction of Jagged 1 (Jag1) expression in AM was necessary and sufficient for augmentation of allergic airway inflammation by UFP. UFP promoted TH2 and TH17 cell differentiation of allergen-specific T cells in a Jag1- and Notch 4-dependent manner. Treatment of mice with an anti-Notch 4 antibody abrogated exacerbation of allergic airway inflammation induced by UFP. CONCLUSION: UFP exacerbate allergic airway inflammation by promoting a Jag1-Notch 4-dependent interaction between AM and allergen-specific T cells, leading to augmented TH cell differentiation.

17.
Clin Immunol ; 191: 21-26, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29307770

RESUMO

Pattern recognition receptors (PRRs), receptors of the innate immune system, are important in interaction with pathogens. Caspase Recruitment Domain-containing protein 9 (CARD9), a member of PRRs, is an intracellular adaptor protein important in fungal defense. CARD9 deficiency causes a rare primary immunodeficiency (PID) characterized by superficial and deep fungal infections. We report a 17year-old female with a homozygous nonsense mutation in CARD9, who presented with severe cerebral fungal infection of the central nervous system. She was also found to have an heterozygous NLRP12 mutation, which may have had add-on effect on the severity of the infection.

18.
F1000Res ; 7: 38, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29375821

RESUMO

Allergic diseases are chronic inflammatory disorders in which there is failure to mount effective tolerogenic immune responses to inciting allergens. The alarming rise in the prevalence of allergic diseases in recent decades has spurred investigations to elucidate the mechanisms of breakdown in tolerance in these disorders and means of restoring it. Tolerance to allergens is critically dependent on the generation of allergen-specific regulatory T (Treg) cells, which mediate a state of sustained non-responsiveness to the offending allergen. In this review, we summarize recent advances in our understanding of mechanisms governing the generation and function of allergen-specific Treg cells and their subversion in allergic diseases. We will also outline approaches to harness allergen-specific Treg cell responses to restore tolerance in these disorders.

19.
J Allergy Clin Immunol ; 141(3): 1050-1059.e10, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28601686

RESUMO

BACKGROUND: LPS-responsive beige-like anchor protein (LRBA) and cytotoxic T lymphocyte-associated antigen 4 (CTLA4) deficiencies give rise to overlapping phenotypes of immune dysregulation and autoimmunity, with dramatically increased frequencies of circulating follicular helper T (cTFH) cells. OBJECTIVE: We sought to determine the mechanisms of cTFH cell dysregulation in patients with LRBA deficiency and the utility of monitoring cTFH cells as a correlate of clinical response to CTLA4-Ig therapy. METHODS: cTFH cells and other lymphocyte subpopulations were characterized. Functional analyses included in vitro follicular helper T (TFH) cell differentiation and cTFH/naive B-cell cocultures. Serum soluble IL-2 receptor α chain levels and in vitro immunoglobulin production by cultured B cells were quantified by using ELISA. RESULTS: cTFH cell frequencies in patients with LRBA or CTLA4 deficiency sharply decreased with CTLA4-Ig therapy in parallel with other markers of immune dysregulation, including soluble IL-2 receptor α chain, CD45RO+CD4+ effector T cells, and autoantibodies, and this was predictive of favorable clinical responses. cTFH cells in patients with LRBA deficiency were biased toward a TH1-like cell phenotype, which was partially reversed by CTLA4-Ig therapy. LRBA-sufficient but not LRBA-deficient regulatory T cells suppressed in vitro TFH cell differentiation in a CTLA4-dependent manner. LRBA-deficient TFH cells supported in vitro antibody production by naive LRBA-sufficient B cells. CONCLUSIONS: cTFH cell dysregulation in patients with LRBA deficiency reflects impaired control of TFH cell differentiation because of profoundly decreased CTLA4 expression on regulatory T cells and probably contributes to autoimmunity in patients with this disease. Serial monitoring of cTFH cell frequencies is highly useful in gauging the clinical response of LRBA-deficient patients to CTLA4-Ig therapy.

20.
J Autoimmun ; 86: 116-119, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28942902

RESUMO

BACKGROUND: Risk of autoimmune thyroid disease (AITD) is strongly heritable. Multiple genes confer increased risk for AITD, but a monogenic origin has not yet been described. We studied a family with apparent autosomal dominant, early onset Hashimoto thyroiditis. METHODS: The family was enrolled in an IRB-approved protocol. Whole exome sequencing was used to study the proband and an affected sibling. The identified variant was studied in other family members by Sanger sequencing. RESULTS: We identified a previously unreported splice site variant in the thyroglobulin gene (TG c.1076-1G > C). This variant was confirmed in all affected family members who underwent testing, and also noted in one unaffected child. The variant is associated with exon 9 skipping, resulting in a novel in-frame variant transcript of TG. CONCLUSION: We discovered a monogenic form of AITD associated with a splice site variant in the thyroglobulin gene. This finding raises questions about the origins of thyroid autoimmunity; possible explanations include increased immunogenicity of the mutated protein or thyroid toxicity with secondary development of anti-thyroid antibodies. Further study into the effects of this variant on thyroid function and thyroid autoimmunity are warranted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA