Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
Int J Pharm ; 578: 119088, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32001291


Docetaxel (DTX), a widely prescribed anticancer agent, is now associated with increased instances of multidrug resistance. Also, being a problematic BCS class IV drug, it poses challenges for the formulators. Henceforth, it was envisioned to synthesize an analogue of DTX with a biocompatible lipid, i.e., palmitic acid. The in-silico studies (molecular docking and simulation) inferred lesser binding of docetaxel palmitate (DTX-PL) with P-gp vis-à-vis DTX and paclitaxel, indicating it to be a poor substrate for P-gp efflux. Solid lipid nanoparticles (SLNs) of the conjugate were prepared using various lipids, viz. palmitic acid, stearic acid, cetyl palmitate and glyceryl monostearate. The characterization studies for the nanocarrier were performed for the surface charge, drug payload, micromeritics, release pattern of drug and surface morphology. From the cytotoxicity assays on resistant MCF-7 cells, it was established that the new analogue offered substantially decreased IC50 to that of DTX. Further, apoptosis assay also corroborated the results obtained in IC50 determination wherein, SA-SLNs showed the highest apoptotic index than free DTX. The conjugate not only enhanced the solubility but also offered lower plasma protein binding and improved pharmacokinetic and pharmacodynamic effect for DTX loaded SA-SLNs in apt animal models, and lower affinity to P-gp efflux. The studies provide preliminary evidence and a ray of hope for a better candidate in its nano version for safer and effective cancer chemotherapy.

Int J Pharm ; 573: 118889, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31765778


The present investigation explores the potential of pH sensitive cationic liposomes for its in vivo tumor targeted gene transfection in comparison to its marketed transfecting reagent Lipofectamine® 2000. The lipoplexes were prepared by varying the molar mass ratio of cationic pH-sensitive liposomes with respect to pDNA and were evaluated for optimum size, zeta potential and for complete gel retardation. Similarly, the stability of lipoplexes in the presence of DNase I and serum was evaluated by using gel retardation and heparin displacement assay. The in vitro hemocompatibility assessment of pDNA lipoplexes revealed < 8.5% of hemolysis which was lower than the hemolysis observed for Lipofectamine® lipoplexes (15.9%). The internalization and pH dependent uptake inhibition using ammonium chloride in MCF-7 cells revealed higher internalization and pH sensitive nature of the prepared pH-sensitive system. The pDNA lipoplexes displayed > 80% of cell viability along with 4.42, 5.18 and 5.00 fold higher transfection efficiency than Lipofectamine® lipoplexes in MCF-7, HeLa and HEK-293 cells respectively. Also the in vivo toxicity assessment exhibited no significant change in the levels of biomarkers and no histopathological deformations in case of pDNA lipoplexes treated animals in comparison to control group (PBS). Further, pDNA lipoplexes demonstrated ~1.3 fold higher tumor transfection over Lipofectamine® lipoplexes indicating superior in vivo gene deliverable capabilities. Thus, the developed pH sensitive lipoplexes promises to be a potential tumor targeting and safe delivery system than Lipofectamine® 2000.

Pharm Res ; 36(11): 160, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31520196


PURPOSE: Bortezomib (BTZ) is a proteasome inhibitor used for multiple myeloma and mantle cell lymphoma treatment. BTZ's aqueous in solubility is the main hindrance in its successful development as a commercial formulation. The main objective of the present study is to develop and characterize folic acid-glycine-poly-L-lactic acid (FA-Gly4-PLA) based nanoformulation (NPs) to improve solubility and efficacy of BTZ. METHODS: BTZ loaded FA-Gly4-PLA NPs were prepared and characterized for size, zeta potential, in vitro studies such as release, kinetics modeling, hemolytic toxicity, and cell line-based studies (Reactive Oxygen Species: ROS and cytotoxicity). RESULTS: BTZ loaded NPs (BTZ-loaded FA-Gly4-PLA) and blank NPs (FA-Gly4-PLA) size, zeta, and PDI were found to be 110 ± 8.1 nm, 13.7 ± 1.01 mV, 0.19 ± 0.03 and 198 ± 9.01 nm, 8.63 ± 0.21 mV, 0.21 ± 0.08 respectively. The percent encapsulation efficiency (% EE) and percent drug loading (% DL) of BTZ loaded FA-Gly4-PLA NPs was calculated to be 78.3 ± 4.1 and 12.38 ± 2.1. The Scanning Electron Microscopy (SEM) showed that NPs were slightly biconcave in shape. The in vitro release of BTZ from FA-Gly4-PLA NPs resulted in the sustained manner. The prepared NPs were less hemolytic than BTZ. CONCLUSIONS: BTZ loaded Gly4-PLA NPs apoptotic index was found to be much higher than BTZ but lesser than BTZ loaded FA-Gly4-PLA against breast cancer cell lines (MDA-MB-231). ROS intracellular assessment assay indicated that BTZ and BTZ loaded FA-Gly4-PLA NPs exhibited higher ROS production. Conclusively, the BTZ loaded FA-Gly4-PLA NPs were able to encapsulate more BTZ than BTZ loaded Gly4-PLA NPs and were found to be more effective as per as in vitro anti-cancer effect is concerned.

Antineoplásicos/administração & dosagem , Bortezomib/administração & dosagem , Sistemas de Liberação de Medicamentos , Ácido Fólico/química , Glicina/química , Nanocápsulas/química , Poliésteres/química , Antineoplásicos/química , Bortezomib/química , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Composição de Medicamentos/métodos , Feminino , Humanos
Bioorg Med Chem Lett ; 29(13): 1565-1571, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31078412


Secondary acquired mutant EGFR (L858R-T790M) overexpressed NSCLC forms one of the prevalent form of resistant NSCLC. Another subset of resistant NSCLC includes amplified cMET in mutant EGFR derived tumours. Thus, in continuation to our previous work on these two major targets of resistant NSCLC, i.e., EGFR (L858R-T790M) and cMET, we are hereby reporting reversible inhibitors of these kinases. Out of 11 lead molecules reported in our previous study, we selected triazolo-pyrimidone (BAS 09867482) scaffold for further development of small molecule dual and reversible inhibitors. Analogues of lead with different substituents on the side ring were sketched and docked in both the target kinases, followed by molecular dynamic simulations. Analogues maintaining hydrophobic interaction with M790 in secondary acquired mutant EGFR (L858R-T790M) were selected and duly synthesized. In vitro biochemical evaluation of these molecules against EGFR (L858R-T790M) and cMET kinase, along with EGFR (L858R) kinase disclosed that three molecules were having significant dual kinase inhibitory potential with IC50 values well below 100 nM. Further, in vitro anti-proliferative assay against three cell lines (A549, A431 and H460) was performed. Out of all, two compounds were having significant potency against these cell lines.

Int J Pharm ; 560: 219-227, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30776407


The present investigation highlights the development of D-α-Tocopheryl polyethylene glycol 1000 succinate (Tocophersolan; TPGS) stabilized lipid nanocapsules for enhancing the oral bioavailability and permeability of curcumin (CUR). Lipid nanocapsules were optimized for different lipids, different concentrations of TPGS and different drug: lipid ratio and were further lyophilized. Subsequently, they were characterized by powder X-ray diffraction, Transmission electron microscopy and also evaluated for in vitro release study, Caco-2 cell uptake study, ex vivo intestinal permeability and in vivo pharmacokinetic performance. Optimized lipid nanocapsules exhibited desirable quality attributes (average particle size of 190 nm, polydispersity index of 0.240 and average % entrapment efficiency of 51.06 ±â€¯7.27) employing Maisine™ 35-1 as a lipid carrier, 0.05% TPGS and CUR: lipid ratio of 5:10 and showed sustained release biphasic pattern. They showcased excellent stability in simulated gastrointestinal fluids and storage stability. The CUR nanocapsules exhibited ∼14-fold higher Caco-2 cell uptake and ∼12.8-fold increased ex vivo intestinal permeability. Also, the AUC of CUR nanocapsules in Sprague Dawley rats was increased by ∼12 folds and MRT ∼2.47-folds as compared to aqueous CUR suspension. Thus, lipid nanocapsules possessed a positive impact on improving the permeability and oral bioavailability of CUR.

Curcumina/administração & dosagem , Excipientes/química , Lipídeos/química , Vitamina E/química , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Área Sob a Curva , Disponibilidade Biológica , Células CACO-2 , Química Farmacêutica/métodos , Curcumina/farmacocinética , Portadores de Fármacos/química , Humanos , Absorção Intestinal , Masculino , Nanocápsulas , Tamanho da Partícula , Permeabilidade , Ratos , Ratos Sprague-Dawley