Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32049361

RESUMO

Adenosine deaminase acting on RNA 1 (ADAR1) has been shown to participate in the regulation of endothelial cells (ECs), as well as local and systemic inflammatory responses. Here, we find that bacterial lipopolysaccharide (LPS)-induced upregulation of ADAR1 in lung ECs is impaired in aged mice, an animal model with high rates of sepsis and mortality. Endothelial cell-specific ADAR1 knockout (ADAR1ECKO ) mice suffer from higher mortality rates, aggravated lung injury, and increased vascular permeability under LPS challenge. In primary ADAR1 knockout ECs, expression of the melanoma differentiation-associated gene 5 (MDA5), a downstream effector of ADAR1, is significantly elevated. MDA5 knockout completely rescues the postnatal offspring death of ADAR1ECKO mice. However, there is no reduction in mortality or apoptosis in lung cells of ADAR1ECKO /MDA5-/- mice challenged with LPS, indicating the involvement of an MDA5-independent mechanism in this process.

2.
Artigo em Inglês | MEDLINE | ID: mdl-31958846

RESUMO

BACKGROUND AND AIMS: The inflammation of glomerular endothelial cells induces and promotes the activation of macrophages and contributes to the development of diabetic nephropathy. Thus, this study aimed to investigate the gene regulatory effect and potential role of pyruvate kinase M2 (PKM2) in inflammatory response in diabetic nephropathy. METHODS: The plasma PKM2 levels of patients with diabetes were evaluated. Eight-week-old mice were divided into three groups (WT, db/db mice, and db/db mice treated with TEPP-46) and raised for 12 weeks. Blood and kidney samples were collected at the end of the experiment. Endothelial cells were stimulated with high glucose with or without TEPP-46. The expression of intercellular adhesion molecule 1 (ICAM-1), interleukin 6 (IL-6), interleukin 1 beta (IL-1ß), phospho-PKM2, PKM2, phospho-STAT3, STAT3, nuclear factor kappa B (NF-kB), and phospho-NF-kB in vivo and in vitro were determined using Western blot. The activation of macrophages (CD68+CD86+) in the glomeruli was assessed via fluorescent double staining. Moreover, immune endothelial adhesion experiments were performed. RESULTS: The plasma PKM2 levels of patients with type 2 diabetes increased. P-PKM2 was up-regulated in vivo and in vitro. TEPP-46 decreased inflammatory cell infiltration and ICAM-1 expression in vivo and in vitro and inhibited the differentiation of macrophages to M1 cells in db/db mice with diabetic nephropathy. PKM2 regulated the phosphorylation of STAT3 and NF-kB. Furthermore, high glucose levels induced the transition from tetramer to dimer and the nuclear translocation of PKM2. CONCLUSION: The gene regulatory effect of PKM2 is involved in renal inflammation in type 2 diabetic nephropathy by promoting the phosphorylation of STAT3 and NF-kB and the expression of intercellular adhesion molecule 1. Thus, the down-regulation of phosphorylated PKM2 may have protective effects against diabetic nephropathy by inhibiting renal inflammation.

3.
Acta Pharmacol Sin ; 40(12): 1513-1522, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31253938

RESUMO

Ischemic heart diseases (IHDs) cause great morbidity and mortality worldwide, necessitating effective treatment. Salvianic acid A sodium (SAAS) is an active compound derived from the well-known herbal medicine Danshen, which has been widely used for clinical treatment of cardiovascular diseases in China. This study aimed to confirm the cardioprotective effects of SAAS in rats with myocardial infarction and to investigate the underlying molecular mechanisms based on proteome and transcriptome profiling of myocardial tissue. The results showed that SAAS effectively protected against myocardial injury and improved cardiac function. The differentially expressed proteins and genes included important structural molecules, receptors, transcription factors, and cofactors. Functional enrichment analysis indicated that SAAS participated in the regulation of actin cytoskeleton, phagosome, focal adhesion, tight junction, apoptosis, MAPK signaling, and Wnt signaling pathways, which are closely related to cardiovascular diseases. SAAS may exert its cardioprotective effect by targeting multiple pathways at both the proteome and transcriptome levels. This study has provided not only new insights into the pathogenesis of myocardial infarction but also a road map of the cardioprotective molecular mechanisms of SAAS, which may provide pharmacological evidence to aid in its clinical application.

4.
J Cell Mol Med ; 23(7): 4611-4626, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31104361

RESUMO

It is well-established that homocysteine (Hcy) is an independent risk factor for atherosclerosis. Hcy can promote vascular smooth muscle cell (VSMC) proliferation, it plays a key role in neointimal formation and thus contribute to arteriosclerosis. However, the molecular mechanism on VSMCs proliferation underlying atherosclerosis is not well elucidated. Mitofusin-2 (MFN2) is an important transmembrane GTPase in the mitochondrial outer membrane and it can block cells in the G0/G1 stage of the cell cycle. To investigate the contribution of aberrant MFN2 transcription in Hcy-induced VSMCs proliferation and the underlying mechanisms. Cell cycle analysis revealed a decreased proportion of VSMCs in G0/G1 and an increased proportion in S phase in atherosclerotic plaque of APOE-/- mice with hyperhomocystinaemia (HHcy) as well as in VSMCs exposed to Hcy in vitro. The DNA methylation level of MFN2 promoter was obviously increased in VSMCs treated with Hcy, leading to suppressed promoter activity and low expression of MFN2. In addition, we found that the expression of c-Myc was increased in atherosclerotic plaque and VSMCs treated with Hcy. Further study showed that c-Myc indirectly regulates MFN2 expression is duo to the binding of c-Myc to DNMT1 promoter up-regulates DNMT1 expression leading to DNA hypermethylation of MFN2 promoter, thereby inhibits MFN2 expression in VSMCs treated with Hcy. In conclusion, our study demonstrated that Hcy-induced hypermethylation of MFN2 promoter inhibits the transcription of MFN2, leading to VSMCs proliferation in plaque formation, and the increased binding of c-Myc to DNMT1 promoter is a new and relevant molecular mechanism.

5.
Mol Omics ; 15(4): 271-279, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31099812

RESUMO

Salvianic acid A sodium (SAAS), derived from a well-known herbal medicine Danshen (Salvia miltiorrhiza), is a new drug involved in phase I clinical trials in China for the treatment of coronary heart disease and stable angina pectoris. However, the direct binding protein(s) of SAAS are not understood and the broader cardioprotective effects as well as the underlying mechanisms remain to be further elucidated. In this study, Sprague-Dawley rats were subjected to left anterior descending artery ligation to investigate the cardioprotective effect of SAAS against myocardial infarction (MI). Moreover, a human proteome microarray was used to identify the direct binding proteins of SAAS, which was further verified by metabolomic profiling of rat serum after MI using an ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) based approach. Our results demonstrated that SAAS significantly improved cardiac function and protected against MI-induced injury. In total, 370 proteins were identified to specifically bind SAAS and strikingly enriched in metabolic pathways. Rat serum metabolomic profiling identified 26 potential biomarkers including various glycerophospholipids (GPLs) and an array of fatty acids. Metabolic pathway analysis found increased phospholipid catabolism, sphingolipid metabolism and linoleic acid metabolism, decreased tryptophan metabolism, and impaired glycerophospholipid metabolism and primary bile acid biosynthesis in MI animals, while SAAS remarkably reversed these metabolic changes. SAAS may protect against myocardial infarction in rats by reversing multiple metabolic changes-induced by MI injury. Our findings will shed light on the cardioprotective mechanism of SAAS and aid its clinical use. Moreover, the SAAS-binding proteins identified by the proteome microarray are expected to be a valuable resource for its greater development.


Assuntos
Cardiotônicos/metabolismo , Lactatos/metabolismo , Infarto do Miocárdio/metabolismo , Proteoma/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/química , Cardiotônicos/química , Cardiotônicos/uso terapêutico , China , Cromatografia Líquida de Alta Pressão , Ácidos Graxos/metabolismo , Lactatos/uso terapêutico , Metabolismo dos Lipídeos , Masculino , Espectrometria de Massas , Metabolômica , Infarto do Miocárdio/sangue , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/prevenção & controle , Análise Serial de Proteínas , Ratos , Ratos Sprague-Dawley , Salvia miltiorrhiza/química
6.
BMC Nephrol ; 20(1): 135, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30999892

RESUMO

AIMS: Sphingosine-1-phosphate receptor 2 (S1PR2) is a G-protein-coupled receptor that regulates sphingosine-1-phosphate-triggered cellular response. However, the role of S1PR2 in diabetes-induced glomerular endothelial cell dysfunction remains unclear. This study aims to investigate the effect of S1PR2 blockade on the morphology and function of mitochondria in human renal glomerular endothelial cells (HRGECs). METHODS: HRGECs were pretreated with a S1PR2 antagonist (JTE-013) or a Rho-associated coiled coil-containing protein kinase 1 (ROCK1) inhibitor (Y27632) for 30 min and then cultured with normal glucose (5.5 mM) or high glucose (30 mM) for 72 h. The protein expression levels of RhoA, ROCK1, and Dynmin-related protein-1(Drp1) were evaluated by immunoblotting; mitochondrial morphology was observed by electron microscopy; intracellular levels of ATP, ROS, and Ca2+ were measured by ATPlite, DCF-DA, and Rhod-2 AM assays, respectively. Additionally, the permeability, apoptosis, and migration of cells were determined to evaluate the effects of S1PR2 and ROCK1 inhibition on high glucose-induced endothelial dysfunction. RESULTS: High glucose induced mitochondrial fission and dysfunction, indicated by increased mitochondrial fragmentation, ROS generation, and calcium overload but decreased ATP production. High glucose also induced endothelial cell dysfunction, indicated by increased permeability and apoptosis but decreased migration. However, inhibition of either S1PR2 or ROCK1 almost completely blocked these high glucose-mediated cellular responses. Furthermore, inhibiting S1PR2 resulted in the deceased expression of RhoA, ROCK1, and Drp1 while inhibiting ROCK1 led to the downregulated expression of Drp1. CONCLUSIONS: S1PR2 antagonist modulates the morphology and function of mitochondria in HRGECs via the positive regulation of the RhoA/ROCK1/Drp1 signaling pathway, suggesting that the S1PR2/ROCK1 pathway may play a crucial role in high glucose milieu.

7.
Brain Behav ; 9(4): e01238, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30815998

RESUMO

OBJECTIVES: Postoperative cognitive dysfunction (POCD) is a common clinical complication, with an underlying pathophysiology linked to heightened levels of neuroinflammation. However, it requires clarification as to whether the depth of anesthesia modulates postoperative cognitive dysfunction. This study investigated the association between depth of anesthesia and POCD in elderly patients undergoing abdominal surgery. METHODS: A total of 120 patients aged 60 years or older who were planned for abdominal surgery under total intravenous anesthesia were included in this study. The depth of anesthesia was guided by monitoring Bispectral Index (BIS) data. All study participants completed a battery of nine neuropsychological tests before surgery and at 7 days and 3 months after surgery. POCD was calculated by using the reliable change index. Plasma concentration of C-reactive protein (CRP), interleukin (IL)-1ß, IL-10, S-100ß, and norepinephrine (NE) were measured. RESULTS: The incidence of POCD at 7 days after surgery in the deep anesthesia group was 19.2% (10/52), which was significantly lower (p = 0.032) than the light anesthesia group 39.6% (21/53). The depth of anesthesia had no effect on POCD at 3 months after surgery (10.3% vs 14.6%, respectively, p = 0.558). Similarly, plasma levels of CRP and IL-1ß in deep anesthesia group were lower than that in light anesthesia group at 7 days after surgery (p < 0.05), but not at 3 months after surgery (p > 0.05). There were no significant differences in the plasma concentration of IL-10, S-100ß, and NE between the groups (p > 0.05). CONCLUSIONS: Deep anesthesia under total intravenous anesthesia could decrease the occurrence of short-term POCD and inhibit postoperative peripheral inflammation in elderly patients undergoing abdominal surgery, compared with light anesthesia.


Assuntos
Abdome/cirurgia , Anestesia Geral/métodos , Neurite (Inflamação)/prevenção & controle , Complicações Pós-Operatórias/prevenção & controle , Idoso , Anestésicos Combinados , Anestésicos Intravenosos , Proteína C-Reativa/metabolismo , Disfunção Cognitiva , Eletroencefalografia/métodos , Feminino , Humanos , Interleucina-10 , Interleucina-1beta/metabolismo , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Período Pós-Operatório , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo
8.
Am J Physiol Heart Circ Physiol ; 316(5): H1039-H1046, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30767669

RESUMO

Endothelial inflammation plays an important role in hyperhomocysteinemia (HHcy)-associated vascular diseases. High mobility group box 1 (HMGB1) is a pro-inflammatory danger molecule produced by endothelial cells. However, whether HMGB1 is involved in vascular endothelial inflammation of HHcy is poorly understood. Neuropilin-1 (NRP1) mediates inflammatory response and activates mitogen-activated protein kinases (MAPKs) pathway that has been reported to be involved in regulation of HMGB1. The aim of this study was to determine the alteration of HMGB1 in HHcy, and the role of NRP1 in regulation of endothelial HMGB1 under high homocysteine (Hcy) condition. In the present study, we first observed that the plasma level of HMGB1 was elevated in HHcy patients and an experimental rat model, and increased HMGB1 was also observed in the thoracic aorta of an HHcy rat model. HMGB1 was induced by Hcy accompanied with upregulated NRP1 in vascular endothelial cells. Overexpression of NRP1 promoted expression and secretion of HMGB1 and endothelial inflammation; knockdown of NRP1 inhibited HMGB1 and endothelial inflammation induced by Hcy, which partially regulated through p38 MAPK pathway. Furthermore, NRP1 inhibitor ATWLPPR reduced plasma HMGB1 level and expression of HMGB1 in the thoracic aorta of HHcy rats. In conclusion, our data suggested that Hcy requires NRP1 to regulate expression and secretion of HMGB1. The present study provides the evidence for inhibition of NRP1 and HMGB1 to be the novel therapeutic targets of vascular endothelial inflammation in HHcy in the future. NEW & NOTEWORTHY This study shows for the first time to our knowledge that the plasma level of high mobility group box 1 (HMGB1) is elevated in hyperhomocysteinemia (HHcy) patients, and homocysteine promotes expression and secretion of HMGB1 partially regulated by neuropilin-1 in endothelial cells, which is involved in endothelial inflammation. Most importantly, these new findings will provide a potential therapeutic strategy for vascular endothelial inflammation in HHcy.

9.
J Cell Mol Med ; 23(2): 798-810, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30444033

RESUMO

The dipeptidyl peptidase 4 inhibitor vildagliptin (VLD), a widely used anti-diabetic drug, exerts favourable effects on vascular endothelium in diabetes. We determined for the first time the improving effects of VLD on mitochondrial dysfunction in diabetic mice and human umbilical vein endothelial cells (HUVECs) cultured under hyperglycaemic conditions, and further explored the mechanism behind the anti-diabetic activity. Mitochondrial ROS (mtROS) production was detected by fluorescent microscope and flow cytometry. Mitochondrial DNA damage and ATP synthesis were analysed by real time PCR and ATPlite assay, respectively. Mitochondrial network stained with MitoTracker Red to identify mitochondrial fragmentation was visualized under confocal microscopy. The expression levels of dynamin-related proteins (Drp1 and Fis1) were determined by immunoblotting. We found that VLD significantly reduced mtROS production and mitochondrial DNA damage, but enhanced ATP synthesis in endothelium under diabetic conditions. Moreover, VLD reduced the expression of Drp1 and Fis1, blocked Drp1 translocation into mitochondria, and blunted mitochondrial fragmentation induced by hyperglycaemia. As a result, mitochondrial dysfunction was alleviated and mitochondrial morphology was restored by VLD. Additionally, VLD promoted the phosphorylation of AMPK and its target acetyl-CoA carboxylase in the setting of high glucose, and AMPK activation led to a decreased expression and activation of Drp1. In conclusion, VLD improves endothelial mitochondrial dysfunction in diabetes, possibly through inhibiting Drp1-mediated mitochondrial fission in an AMPK-dependent manner.

10.
Toxicol Lett ; 302: 60-74, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30447258

RESUMO

BACKGROUND: Fine ambient particle matter (PM2.5) induces inflammatory lung injury; however, whether intratracheal administration of PM2.5 increases pulmonary polymorphonuclear leukocyte (PMN) infiltration, the mechanism of infiltration, and if these cells exacerbate PM2.5-induced lung injury are unknown. METHODS: Using 32,704 subjects, the association between blood PMNs and ambient PM2.5 levels on the previous day was retrospectively analyzed. Neutropenia was achieved by injecting mice with PMN-specific antibodies. Inhibition of PMN infiltration was achieved by pretreating PMNs with soluble vascular cell adhesion molecule-1 (sVCAM-1). The effects of PMNs on PM2.5-induced lung injury and endothelial dysfunction were observed. RESULT: Short-term PM2.5 (> 75 µg/m3 air) exposure increased the PMN/white blood cell ratio and the PMN count in human peripheral blood observed during routine examination. A significant number of PM2.5-treated PMNs was able to bind sVCAM-1. In mice, intratracheally-instilled PM2.5 deposited in the alveolar space and endothelial cells, which caused significant lung edema, morphological disorder, increased permeability of the endothelial-alveolar epithelial barrier, and PMN infiltration with increased VCAM-1 expression. Depletion of circulatory PMNs inhibited these adverse effects. Replenishment of untreated PMNs, but not those pretreated with soluble VCAM-1, restored lung injury. In vitro, PM2.5 increased VCAM-1 expression and endothelial and epithelial monolayer permeability, and promoted PMN adhesion to, chemotaxis toward, and migration across these monolayers. PMNs, but not those pretreated with soluble VCAM-1, exacerbated these effects. CONCLUSION: VCAM-1-mediated PMN infiltration was essential for a detrimental cycle of PM2.5-induced inflammation and lung injury. Results suggest that drugs that inhibit PMN function might prevent acute deterioration of chronic pulmonary and cardiovascular diseases triggered by PM2.5.


Assuntos
Lesão Pulmonar/induzido quimicamente , Pulmão/metabolismo , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Material Particulado , Edema Pulmonar/induzido quimicamente , Molécula 1 de Adesão de Célula Vascular/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Permeabilidade Capilar , Adesão Celular , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Pulmão/imunologia , Pulmão/patologia , Lesão Pulmonar/imunologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Neutropenia/imunologia , Neutropenia/metabolismo , Neutropenia/patologia , Neutrófilos/imunologia , Neutrófilos/patologia , Tamanho da Partícula , Edema Pulmonar/imunologia , Edema Pulmonar/metabolismo , Edema Pulmonar/patologia , Estudos Retrospectivos , Molécula 1 de Adesão de Célula Vascular/imunologia , Adulto Jovem
11.
J Cheminform ; 10(1): 34, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30066211

RESUMO

Autophagy is an important homeostatic cellular recycling mechanism responsible for degrading unnecessary or dysfunctional cellular organelles and proteins in all living cells. In addition to its vital homeostatic role, this degradation pathway also involves in various human disorders, including metabolic conditions, neurodegenerative diseases, cancers and infectious diseases. Therefore, the comprehensive understanding of autophagy process, autophagy-related modulators and corresponding pathway and disease information will be of great help for identifying the new autophagy modulators, potential drug candidates, new diagnostic and therapeutic targets. In recent years, some autophagy databases providing structural and functional information were developed, but the specific databases covering autophagy modulator (proteins, chemicals and microRNAs)-related target, pathway and disease information do not exist. Hence, we developed an online resource, Human Autophagy Modulator Database (HAMdb, http://hamdb.scbdd.com ), to provide researchers related pathway and disease information as many as possible. HAMdb contains 796 proteins, 841 chemicals and 132 microRNAs. Their specific effects on autophagy, physicochemical information, biological information and disease information were manually collected and compiled. Additionally, lots of external links were available for more information covering extensive biomedical knowledge. HAMdb provides a user-friendly interface to query, search, browse autophagy modulators and their comprehensive related information. HAMdb will help researchers understand the whole autophagy process and provide detailed information about related diseases. Furthermore, it can give hints for the identification of new diagnostic and therapeutic targets and the discovery of new autophagy modulators. In a word, we hope that HAMdb has the potential to promote the autophagy research in pharmacological and pathophysiological area.

12.
J Reprod Immunol ; 129: 1-8, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30007203

RESUMO

To explore new ideas about the pathogeny of preeclampsia (PE) proteinuria, this study focused on whether severe PE serum (PES) could induce high-molecular-weight protein (HMWP) hyperpermeability in glomerular endothelial cells (GEC) via the HMGB1-Caveolin-1 (CAV-1) pathway. Normal pregnancy serum (NPS) and severe PES were used to treat primary human GEC monolayer for 24 h. The CAV-1 inhibitor methyl-beta-cyclodextrin (MBCD), the HMGB1 inhibitor glycyrrhizicacid (GA), recombinant HMGB1 (rHMGB1) were also used to treat GEC monolayer that were stimulated by NPS or severe PES. The dynamic permeability of GEC to HMWP was detected by Evans blue-labeled BSA and CAV-1 expression in GEC was analyzed by immunofluorescence staining and Western blotting. We detected HMGB1 expression in placenta and serum in normal pregnancy and severe PE. The results showed that severe PES significantly promoted GEC hyperpermeability and CAV-1 expression. By inhibiting CAV-1 expression, MBCD reversed severe PES-induced GEC monolayer permeability. HMGB1 expression in PE placenta and serum was significantly increased. Compared with that in normal placenta, HMGB1expression was increased in the cytoplasm of syncytiotrophoblast cells in PE placenta. GA decreased the severe PES-induced hyperpermeability and CAV-1 expression in GEC. rHMGB1 induced high expression levels of CAV-1 and HMWP hyperpermeability in GEC. In conclusion, HMGB1 is increased in severe PE patients and induces the expression of CAV-1 in GEC. High expression of CAV-1 in GEC can promote HMWP hyperpermeability, which may contribute to the development of PE proteinuria.


Assuntos
Caveolina 1/metabolismo , Endotélio Vascular/fisiologia , Proteína HMGB1/metabolismo , Placenta/metabolismo , Soro/metabolismo , Adulto , Caveolina 1/antagonistas & inibidores , Caveolina 1/genética , Permeabilidade da Membrana Celular , Células Cultivadas , Feminino , Ácido Glicirrízico/farmacologia , Proteína HMGB1/antagonistas & inibidores , Humanos , Pré-Eclâmpsia , Gravidez , Proteinúria , RNA Interferente Pequeno/genética , Transdução de Sinais , Regulação para Cima , beta-Ciclodextrinas/farmacologia
13.
Clin Sci (Lond) ; 132(16): 1797-1810, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30006482

RESUMO

There is a pressing need for new approaches to prevent stroke. Endothelial progenitor cells (EPCs) promote vascular repair and revascularization in the ischemic brain. The present study sought to evaluate whether preventive delivery of EPCs could prevent or protect against stroke. Stroke-prone spontaneously hypertensive rats (SHR-SP) received a single injection of EPCs, and their survival time was monitored. In addition, at 28 and/or 42 days after a single injection of EPCs, SHR-SP and mice were subjected to cerebral ischemia, and cerebral ischemic injury, local angiogenesis and in vivo EPC integration were determined. Other experiments examined the effects of EPC conditioned medium, and the distribution of donor EPCs taken from GFP transgenic mice. It was found that EPC-pretreated SHR-SP showed longer lifespans than untreated controls. A single preventive injection of EPCs could produce persistent protective effects against cerebral ischemic injury (lasting at least 42 days), and promote local angiogenesis in the ischemic brain, in two types of animals (SHR-SP and normotensive mice). EPCs of donor origin could be detected in the recipient peripheral blood, and integrated into the recipient ischemic brains. Furthermore, it was suggested that mouse EPCs might exert paracrine effects on cerebral ischemic injury in addition to their direct angiogenic effects. In conclusion, a single preventive injection of EPCs prolonged the lifespan of SHR-SP, and protected against cerebral ischemic injury for at least 7 weeks. It is implied that EPC injection might be a promising candidate for a preventive role in patients at high risk for stroke.


Assuntos
Isquemia Encefálica/prevenção & controle , Células Progenitoras Endoteliais/transplante , Longevidade/fisiologia , Acidente Vascular Cerebral/prevenção & controle , Animais , Pressão Sanguínea/efeitos dos fármacos , Isquemia Encefálica/complicações , Isquemia Encefálica/terapia , Infarto Cerebral/fisiopatologia , Infarto Cerebral/prevenção & controle , Meios de Cultivo Condicionados/farmacologia , Humanos , Hipertensão/complicações , Hipertensão/fisiopatologia , Longevidade/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/fisiologia , Ratos Endogâmicos SHR , Ratos Sprague-Dawley , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/terapia , Análise de Sobrevida
14.
Oncotarget ; 9(43): 27318, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29930768

RESUMO

[This corrects the article DOI: 10.18632/oncotarget.9717.].

15.
Am J Physiol Heart Circ Physiol ; 315(3): H571-H580, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29906232

RESUMO

Endothelial cell senescence is regarded as a vital characteristic of cardiovascular diseases. Elevated palmitate (PA) is an independent risk factor of cardiovascular diseases, but its role in endothelial cell senescence is currently unknown. During the course of studying the prosenescent role of PA, we discovered a key role of dsRNA-dependent protein kinase [protein kinase R (PKR)] in endothelial senescence. Exposure of human umbilical vein endothelial cells (HUVECs) to PA-induced cell senescence is characterized by increased levels of senescence-associated ß-galactose glucosidase activity, excessive production of reactive oxygen species production, impaired cellular proliferation, and G1 phase arrest. This phenomenon is associated with an increase of PKR autophosphorylation and decreased activity of sirtuin 1 (Sirt1), a pivotal antisenescent factor. PKR inactivation by PKR siRNA or its phosphorylation inhibitor 2-aminopurine significantly attenuated PA-induced HUVEC senescence by reversing Sirt1 activity and its downstream signaling. Moreover, to study the regulatory mechanism between PKR and Sirt1, we found that PKR promotes JNK activation to inhibit Sirt1 activity and that this effect could be reversed by the JNK inhibitor SP600125. These findings provide evidence that PKR mediates PA-induced HUVEC senescence by inhibiting Sirt1 signaling. Our study provides novel insights into the actions and mechanisms of PKR in endothelial senescence. NEW & NOTEWORTHY This study first provides a novel observation that dsRNA-dependent protein kinase (PKR) mediates palmitate-induced sirtuin 1 inactivation and subsequent human umbilical vein endothelial cell senescence. Most importantly, these new findings will provide a potential therapeutic strategy to improve free fatty acid-induced endothelial senescence by targeting PKR in cardiovascular diseases.

16.
Exp Ther Med ; 15(6): 4791-4797, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29805497

RESUMO

Exosomes are a family of extracellular vesicles that are secreted from almost all types of cells and are associated with cell-to-cell communication. The present study was performed to investigate the effects of human induced pluripotent stem cell-derived exosomes (hiPSC-exo) on cell viability, capillary-like structure formation and senescence in endothelial cells exposed to high glucose. Exosomes were isolated from the conditional medium of hiPSCs and confirmed by transmission electron microscopy, nanoparticle tracking analysis and western blot analysis using Alix and cluster of differentiation-63 as markers. hiPSC-exo were labeled with PKH26 for tracking, and it was determined that spherical exosomes, with a typical cup-shape, were absorbed by human umbilical vascular endothelial cells (HUVECs). Cultured HUVECs were treated with high glucose (33 mM) with or without hiPSC-exo (20 µg/ml) for 48 h, and cell viability, capillary tube formation and senescence were assessed. When exposed to high glucose, viability and tube formation in HUVECs was significantly reduced (P<0.0001), whereas the proportion of senescent cells was higher compared with that in control HUVECs (P<0.0001). Furthermore, hiPSC-exo restored cell viability and capillary-like structure formation, and reduced senescence in HUVECs exposed to high glucose (P<0.0001). However, hiPSC-exo had minimal effects on normal HUVECs. These findings suggest that stem cell-derived exosomes are able to promote cell proliferation, enhance capillary-like structure formation and reduce senescence in endothelial cells exposed to high glucose.

17.
Inflamm Res ; 67(5): 455-466, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29523916

RESUMO

OBJECTIVE: The peptide lycosin-I has anti-bacterial and anti-cancer capacities. However, the anti-inflammatory activity of lycosin-I remains unknown. We investigated whether lycosin-I could attenuate inflammation. MATERIALS AND METHODS: Human umbilical vein endothelial cells (HUVECs) were treated with lycosin-I before exposure to tumor necrosis factor-α (TNF-α). The expression of intercellular cell adhesion molecule-1 (ICAM-1), nuclear transcription factor-kappa B (NF-κB) p65 and inhibitory subunit of NF-κB alpha (IκBα) was evaluated by western blot. The expression of interleukin-6 (IL-6) and interleukin-8 (IL-8) was detected by quantitative RT-PCR or ELISA. Immunofluorescence analysis was used to determine the impact of lycosin-I on NF-κB pathway. C57BL/6 mice were pretreated with lycosin-I before exposure with lipopolysaccharide (LPS). RESULTS: Lycosin-I significantly reduced the TNF-α-enhanced expression of IL-6, IL-8 and ICAM-1. Lycosin-I also inhibited the human monocyte cells adhesion to HUVECs. We further demonstrated that lycosin-I could effectively suppress the reaction of endothelial cells to TNF-α by inhibiting IκBα degradation. Subsequently, the phosphorylation and translocation of NF-κB p65 could also be attenuated. Furthermore, lycosin-I exhibited a significant protection of C57BL/6 mice against LPS-induced death. CONCLUSIONS: Our results suggested that the anti-inflammatory activity of lycosin-I was associated with NF-κB activation and lycosin-I had potential to be a novel therapeutic candidate for inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Quinase I-kappa B/antagonistas & inibidores , Inflamação/prevenção & controle , NF-kappa B/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Venenos de Aranha/farmacologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Quinase I-kappa B/biossíntese , Inflamação/induzido quimicamente , Inflamação/mortalidade , Molécula 1 de Adesão Intercelular/biossíntese , Lipopolissacarídeos/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/biossíntese , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelA/biossíntese
18.
J Cell Mol Med ; 22(5): 2774-2790, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29512924

RESUMO

Pyruvate kinase M2 (PKM2) regulates the final step of glycolysis levels that are correlated with the sensitivity of anticancer chemotherapeutic drugs. THP is one of the major drugs used in non-muscle-invasive bladder cancer instillation chemotherapy. However, low response ratio of THP (19.7%) treatment to human genitourinary tumours using collagen gel matrix has been observed. This study aims to investigate the effect of down-regulation of PKM2 on THP efficiency. Via inhibitor or siRNA, the effects of reduced PKM2 on the efficiency of THP were determined in 2 human and 1 murine bladder cancer cell lines, using MTT, cologenic and fluorescence approaches. Molecular mechanisms of PKM2 on THP sensitization were explored by probing p-AMPK and p-STAT3 levels via WB. Syngeneic orthotopic bladder tumour model was applied to evaluate this efficiency in vivo, analysed by Kaplan-Meier survival curves, body and bladder weights plus immunohistochemistric tumour biomarkers. PKM2 was overexpressed in bladder cancer cells and tissues, and down-regulation of PKM2 enhanced the sensitivity of THP in vitro. Activation of AMPK is essential for THP to exert anti-bladder cancer activities. On the other hand, down-regulating PKM2 activates AMPK and inhibits STAT3, correlated with THP sensitivity. Compared with THP alone (400 µmol L-1 , 50 µL), the combination with metformin (60 mmol L-1 , 50 µL) stopped growth of bladder cancer completely in vivo (combination group VS normal group P = .078). Down-regulating the expression of PKM2 enhances the anticancer efficiency of THP. This study provides a new insight for improving the chemotherapeutic effect of THP.


Assuntos
Antineoplásicos/uso terapêutico , Regulação para Baixo , Doxorrubicina/análogos & derivados , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/enzimologia , Adenilato Quinase/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Metformina/farmacologia , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
19.
J Cheminform ; 10(1): 16, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29556758

RESUMO

BACKGROUND: With the increasing development of biotechnology and informatics technology, publicly available data in chemistry and biology are undergoing explosive growth. Such wealthy information in these data needs to be extracted and transformed to useful knowledge by various data mining methods. Considering the amazing rate at which data are accumulated in chemistry and biology fields, new tools that process and interpret large and complex interaction data are increasingly important. So far, there are no suitable toolkits that can effectively link the chemical and biological space in view of molecular representation. To further explore these complex data, an integrated toolkit for various molecular representation is urgently needed which could be easily integrated with data mining algorithms to start a full data analysis pipeline. RESULTS: Herein, the python library PyBioMed is presented, which comprises functionalities for online download for various molecular objects by providing different IDs, the pretreatment of molecular structures, the computation of various molecular descriptors for chemicals, proteins, DNAs and their interactions. PyBioMed is a feature-rich and highly customized python library used for the characterization of various complex chemical and biological molecules and interaction samples. The current version of PyBioMed could calculate 775 chemical descriptors and 19 kinds of chemical fingerprints, 9920 protein descriptors based on protein sequences, more than 6000 DNA descriptors from nucleotide sequences, and interaction descriptors from pairwise samples using three different combining strategies. Several examples and five real-life applications were provided to clearly guide the users how to use PyBioMed as an integral part of data analysis projects. By using PyBioMed, users are able to start a full pipelining from getting molecular data, pretreating molecules, molecular representation to constructing machine learning models conveniently. CONCLUSION: PyBioMed provides various user-friendly and highly customized APIs to calculate various features of biological molecules and complex interaction samples conveniently, which aims at building integrated analysis pipelines from data acquisition, data checking, and descriptor calculation to modeling. PyBioMed is freely available at http://projects.scbdd.com/pybiomed.html .

20.
Cell Physiol Biochem ; 45(1): 175-191, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29339666

RESUMO

BACKGROUND/AIMS: Chronic cold exposure may increase energy expenditure and contribute to counteracting obesity, an important risk factor for cerebrocardiovascular diseases. This study sought to evaluate whether preventive cold acclimation before ischemia onset might be a promising option for preventing cerebral ischemic injury. METHODS: After a 14-day cold acclimation period, young and aged mice were subjected to permanent cerebral ischemia, and histological analyses and behavioral tests were performed. Mouse endothelial progenitor cells (EPCs) were isolated, their function and number were determined, and the effects of EPC transplantation on cerebral ischemic injury were investigated. RESULTS: Preventive cold acclimation before ischemia onset increased EPC function, promoted ischemic brain angiogenesis, protected against cerebral ischemic injury, and improved long-term stroke outcomes in young mice. In addition, transplanted EPCs from cold-exposed mice had a greater ability to reduce cerebral ischemic injury and promote local angiogenesis compared to those from control mice, and EPCs from donor animals could integrate into the recipient ischemic murine brain. Furthermore, transplanted EPCs might exert paracrine effects on cerebral ischemic injury, which could be improved by preventive cold acclimation. Moreover, preventive cold acclimation could also enhance EPC function, promote local angiogenesis, and protect against cerebral ischemic injury in aged mice. CONCLUSIONS: Preventive cold acclimation before ischemia onset improved long-term stroke outcomes in mice at least in part via promoting the reparative function of EPC. Our findings imply that a variable indoor environment with frequent cold exposure might benefit individuals at high risk for stroke.


Assuntos
Isquemia Encefálica/prevenção & controle , Células Progenitoras Endoteliais/transplante , Acidente Vascular Cerebral/terapia , Fatores Etários , Animais , Comportamento Animal , Células da Medula Óssea/citologia , Isquemia Encefálica/complicações , Isquemia Encefálica/patologia , Adesão Celular , Movimento Celular , Células Cultivadas , Temperatura Baixa , Meios de Cultivo Condicionados/farmacologia , Modelos Animais de Doenças , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica , Acidente Vascular Cerebral/etiologia , Superóxidos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA