Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 325
Filtrar
1.
Microbiol Spectr ; : e0191821, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851181

RESUMO

This study aimed to compare the fecal microbiome and antimicrobial resistance between captive and free-range sika deer with the same exposure to antibiotic anthelmintics. The taxonomic differences mainly involved significant changes in the dominant phyla, genera, and species. Linear discriminant analysis effect size (LEfSe) analysis revealed that 22 taxa were significantly different between the two groups. The KEGG analysis showed that the fecal microbiome metabolic function, and all level 2 categories in metabolism had higher abundance in the free-range deer. Based on the carbohydrate-active enzyme (CAZy) database analysis, glycoside hydrolases and carbohydrate-binding modules showed remarkable differences between the two groups. Regarding antibiotic resistance, tetQ and lnuC dominated the antibiotic resistance ontology (ARO) terms, and tetracycline and lincosamide resistance dominated the antimicrobial resistance patterns. Furthermore, the lnuC, ErmF, and tetW/N/W AROs and lincosamide resistance showed higher abundance in the captive deer, suggesting that captivity may yield more serious resistance issues because of the differences in greenfeed diet, breeding density, and/or housing environment. The results also revealed important associations between the phylum Proteobacteria, genus Prevotella, and major antibiotic resistance genes. Although the present study was a pilot study with a limited sample size that was insufficient control for some potential factors, it serves as the metagenomic study on the microbial communities and antimicrobial resistance in sika deer. IMPORTANCE We used a metagenomic approach to investigate whether and how captive and free-range impact the microbial communities and antimicrobial resistance in sika deer. The results provide solid evidence of the significant impacts on the microbial composition and function in captive and free-range sika deer. Interestingly, although the sika deer had the same exposure to antibiotic anthelmintics, the antimicrobial resistances were affected by the breeding environment.

2.
Exp Mol Med ; 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34759325

RESUMO

Osteoarthritis (OA) is significantly associated with diabetes, but how hyperglycemia induces or aggravates OA has not been shown. The synovium plays a critical role in cartilage metabolism and substance exchange. Herein, we intended to investigate whether and how hyperglycemia affects the occurrence and progression of OA by influencing the synovium. In patients with knee OA and diabetes (DM OA), we found a more severe inflammatory response, higher endoplasmic reticulum stress (ERS) levels, and more advanced glycosylation end products (AGEs) accumulation in the synovium than in patients without diabetes. Subsequently, we found similar results in the DM OA group in a rat model. In the in vitro cocultivation system, high glucose-stimulated AGEs accumulation, ERS, and inflammation in rat fibroblast-like synoviocytes (FLSs), which resulted in chondrocyte degeneration due to inflammatory factors from FLSs. Furthermore, in the synovium of the DM OA group and FLSs treated with high glucose, the expression of glucose transporter 1 (GLUT1) and its regulatory factor hypoxia-inducible factor (HIF)-1α was increased significantly. Inhibitors of HIF-1α, GLUT1 or AGEs receptors attenuated the effect of high glucose on chondrocyte degradation in the FLS-chondrocyte coculture system. In summary, we demonstrated that hyperglycemia caused AGEs accumulation in FLSs via the HIF-1α-GLUT1 pathway, which increases the release of inflammatory factors from FLSs, subsequently inducing chondrocyte degradation and promoting OA progression.

3.
J Int Med Res ; 49(11): 3000605211057823, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34839754

RESUMO

Generally, cochlear implants (CIs) are effective in helping patients improve their hearing performance; however, some patients have poor hearing performance owing to facial nerve stimulation (FNS), which is often associated with cochlear anomalies. We report a case with a normal cochlea and severe and persistent FNS owing to cochlear-facial dehiscence (CFD) that affected the CI outcomes. Preoperatively, a careful review of the computed tomography images before CI surgery is necessary not only for patients with otosclerosis and inner ear malformations but also for patients with normal cochlear structures because facial nerve anomalies could be present.


Assuntos
Implante Coclear , Implantes Cocleares , Otosclerose , Cóclea/cirurgia , Nervo Facial/diagnóstico por imagem , Nervo Facial/cirurgia , Humanos , Otosclerose/cirurgia
4.
Waste Manag ; 137: 319-328, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34837743

RESUMO

The traditional sodium desulfurization process for waste lead-acid batteries is beneficial to the environment; however, it is limited by poor economic viability as the cost of desulfurizer is much higher than the value of desulfurization by-products. This study proposes a new closed-loop pre-desulfurization process for lead paste, which consumes only lime as the indirect desulfurizer, produces sodium sulfate as a by-product, and regenerates sodium hydroxide as the direct desulfurizer. The concentration of prepared sodium hydroxide reached 2.57 mol/L when the reaction was conducted at room temperature for 2.0 h, with a sodium oxalate: calcium oxide molar ratio of 1:1.3, a CaO: water mass ratio of 1:6, and magnetic stirring at 600 rpm. Cost estimation and economic analyses were also conducted. The cost of lead paste generated by this new pre-desulfurization process was 37.62 dollars/ton lower than traditional high-temperature smelting, and 44.42 dollars/ton lower than direct sodium pre-desulfurization. Thus, this process provides a practical and feasible clean recycling method for waste lead-acid batteries with significant environmental and economic benefits.

5.
Arch Gynecol Obstet ; 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34694430

RESUMO

BACKGROUND: Pregnancy complicated with juvenile granulosa cell tumor (JGCT) is very rare; thus, the experience on clinical diagnosis and management is limited. CASES: Two patients presented with abdominal pain, two were incidentally discovered, one by ultrasonography, and one during a caesarian section. One case received an emergency caesarian section because of tumor rupture at 38th week's gestation, the rest were treated at full term and no abnormalities were detected in the newborns. Three cases received further staging surgery, two of which received postoperative adjuvant chemotherapy. No patient had recurrent disease after a follow-up period spanning from 13 to 57 months. CONCLUSION: In the absence of emergency, surgery can be delayed without affecting the fetus. More research is needed to determine the value of chemotherapy in FIGO stage I patients.

6.
Natl Sci Rev ; 8(6): nwaa306, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34691667

RESUMO

Telomerase acts as an important biomarker for tumor identification, and synthesizes telomeric repeats at the end of chromosome telomeres during the replicative phase of the cell cycle; thus, the expression level of telomerase changes as the cell cycle progresses. TERT mRNA expression and telomerase activity were significantly increased in over 80% of human cancers from tissue specimens. Although many efforts have been made in detecting the activity of TERT mRNA and active telomerase, the heterogeneous behavior of the cell cycle was overlooked, which might affect the accuracy of the detection results. Herein, the AIEgen-based biosensing systems of PyTPA-DNA and Silole-R were developed to detect the cellular level of TERT mRNA and telomerase in different cell cycles. As a result, the fluorescence signal of cancer cells gradually increased from G0/G1, G1/S to S phase. In contrast, both cancer cells arrested at G2/M phase and normal cells exhibited negligible fluorescence intensities. Compared to normal tissues, malignant tumor samples demonstrated a significant turn-on fluorescence signal. Furthermore, the transcriptomics profiling revealed that tumor biomarkers changed as the cell cycle progressed and biomarkers of CA9, TK1 and EGFR were more abundantly expressed at early S stage. In this vein, our study presented advanced biosensing tools for more accurate analysis of the cell-cycle-dependent activity of TERT mRNA and active telomerase in clinical tissue samples.

7.
Front Microbiol ; 12: 700008, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603226

RESUMO

Numerous studies have shown that droplet digital PCR (ddPCR) is a promising tool for the diagnosis of pathogens, especially in samples with low concentrations of pathogenic DNA. An early diagnosis of candidemia is critical for the effective treatment of patients. In this study, we evaluated the sensitivity and specificity of ddPCR assay for Candida DNA detection both in vitro by mixing fungal cells with human blood and in vivo by analyzing blood samples from infected mice and patients with suspected candidemia. The results showed that ddPCR assay could detect a minimum of 4.5 DNA copies per reaction in blood samples. ddPCR showed higher sensitivity and specificity for Candida DNA detection than traditional culture and quantitative PCR (qPCR) methods and also exhibited significantly better positive and negative predictive values than the culture and qPCR methods that were commonly used in clinical practice. Hence, our study demonstrates that ddPCR assay is a promising method for the timely diagnosis of candidemia and could be useful for monitoring the treatment of candidemia.

8.
Anal Chem ; 93(43): 14552-14559, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34677940

RESUMO

Herein, we subtly engineered a pH and membrane receptor dual-activatable aptamer therapeutic for bispecific tumor cell imaging and in situ drug release by utilizing a hairpin-contained i-motif as the acid-responsive element to be complementary with a tumor-targeted aptamer, named as an aptamer "molecule-doctor" (pH-Apt-MD). Specifically, the pH-Apt-MD consisted of two DNA strands, where the Apt-sgc8c was labeled with AF488 and Cy3 at its 5'- and 3'-end, respectively. The I-strand, a hairpin-contained i-motif, was complementary to the Apt-sgc8c strand partially, labeled with a BHQ2 in the middle, thus generating Cy3 with quenched fluorescence and only AF488-emitted fluorescence. The double-helix region of pH-Apt-MD was designed rich in GC bases, providing sites for doxorubicin (Dox) intercalation. Once target cells were encountered, the pH-Apt-MD disassembled due to the specific recognition of the aptamer and conformation change of the i-motif, with activated fluorescence resonance energy transfer (FRET) signals between AF488 and Cy3, accompanied by Dox release in situ. Benefiting from the design of the hairpin-contained i-motif, the pH-Apt-MD presented a narrow pH response range (pH 6.0-6.8) with a transition midpoint (pHT) of 6.50 ± 0.04. Furthermore, living cell studies revealed that the stimuli-responsive FRET signal activation of pH-Apt-MD was successfully achieved on the HCT116 cell surface with ultralow background and enhanced imaging contrast. Then, the cytotoxicity experiments proved that accurate drug release and cell killing were realized to target cells in an acidic microenvironment. As a facile double stimuli-responsive strategy, the pH-Apt-MD may hold great promise for application in precise diagnosis and therapy of cancer cells.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Transferência Ressonante de Energia de Fluorescência , Homicídio , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Microambiente Tumoral
9.
Environ Sci Technol ; 55(20): 14204-14214, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34623146

RESUMO

MnO2 nanorods with exposed (110), (100), or (310) facets were prepared and investigated for catalytic oxidation of chlorobenzene, then the (110)-exposed MnO2 nanorod was screened as the candidate parent and further modified by Pt and/or Mo with different contents. The loading of Pt enhanced activity and versatility of the pristine MnO2, but the polychlorinated byproducts and Cl2 were promoted, conversely, as the decoration of Mo inhibited the polychlorinated byproducts and improved durability. Determination of structure and properties suggested that Pt facilitated the formation of more oxygen vacancies/Mn3+ and surface adsorbed oxygen weakened the bonds of surface lattice oxygen, while Mo stabilized surface lattice oxygen and increased acid sites, especially Brønsted acid sites. Expectedly, Pt and Mo bifunctionally modified MnO2 presented a preferable activity, selectivity, and durability along with the super resistance to H2O, high-temperature, and HCl, and no prominent deactivation was observed within 30 h at 300 °C under dry and humid conditions, even at high-temperature aging at 600 °C and HCl-pretreatment (7 h). In this work, the optimized Mo and Pt codecorated MnO2 was considered a promising catalyst toward practical applications for catalytic oxidation of actual Cl-VOCs emissions.


Assuntos
Compostos de Manganês , Nanotubos , Catálise , Clorobenzenos , Óxidos
10.
Chem Sci ; 12(36): 12118-12129, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34667577

RESUMO

Exploitation of stimuli-responsive nanoplatforms is of great value for precise and efficient cancer theranostics. Herein, an in situ activable "nanocluster-bomb" detonated by endogenous overexpressing legumain is fabricated for contrast-enhanced tumor imaging and controlled gene/drug release. By utilizing the functional peptides as bioligands, TAMRA-encircled gold nanoclusters (AuNCs) endowed with targeting, positively charged and legumain-specific domains are prepared as quenched building blocks due to the AuNCs' nanosurface energy transfer (NSET) effect on TAMRA. Importantly, the AuNCs can shelter therapeutic cargos of DNAzyme and Dox (Dzs-Dox) to aggregate larger nanoparticles as a "nanocluster-bomb" (AuNCs/Dzs-Dox), which could be selectively internalized into cancer cells by integrin-mediated endocytosis and in turn locally hydrolyzed in the lysosome with the aid of legumain. A "bomb-like" behavior including "spark-like" appearance (fluorescence on) derived from the diminished NSET effect of AuNCs and cargo release (disaggregation) of Dzs-Dox is subsequently monitored. The results showed that the AuNC-based disaggregation manner of the "nanobomb" triggered by legumain significantly improved the imaging contrast due to the activable mechanism and the enhanced cellular uptake of AuNCs. Meanwhile, the in vitro cytotoxicity tests revealed that the detonation strategy based on AuNCs/Dzs-Dox readily achieved efficient gene/chemo combination therapy. Moreover, the super efficacy of combinational therapy was further demonstrated by treating a xenografted MDA-MB-231 tumor model in vivo. We envision that our multipronged design of theranostic "nanocluster-bomb" with endogenous stimuli-responsiveness provides a novel strategy and great promise in the application of high contrast imaging and on-demand drug delivery for precise cancer theranostics.

11.
Adv Mater ; : e2105812, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34677873

RESUMO

Next-generation batteries based on conversion reactions, including aqueous metal-air batteries, nonaqueous alkali metal-O2 and -CO2 batteries, alkali metal-chalcogen batteries, and alkali metal-ion batteries have attracted great interest. However, their use is restricted by inefficient reversible conversion of active agents. Developing bifunctional catalysts to accelerate the conversion reaction kinetics in both discharge and charge processes is urgently needed. Graphene-, or graphene-like carbon-supported atomically dispersed metal catalysts (G-ADMCs) have been demonstrated to show excellent activity in various electrocatalytic reactions, making them promising candidates. Different from G-ADMCs for catalysis, which only require high activity in one direction, G-ADMCs for rechargeable batteries should provide high activity in both discharging and charging. This review provides guidance for the design and fabrication of bifunctional G-ADMCs for next-generation rechargeable batteries based on conversion reactions. The key challenges that prevent their reversible conversion, the origin of the activity of bifunctional G-ADMCs, and the current design principles of bifunctional G-ADMCs for highly reversible conversion, have been analyzed and highlighted for each conversion-type battery. Finally, a summary and outlook on the development of bifunctional G-ADMC materials for next-generation batteries with a high energy density and excellent energy efficiency are given.

12.
Front Psychol ; 12: 710122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489813

RESUMO

New technologies, such as brain-computer interfaces technology, advanced artificial intelligence, cloud computing, and virtual reality technology, have a strong influence on our daily activities. The application and commercialization of these technologies are prevailing globally, such as distance education, health monitoring, smart home devices, and robots. However, we still know little about the roles of individual emotion and the external environment on the commercialization of these new technologies. Therefore, we focus on the emotional factor of the leader, which is their passion for work, and discuss its effect on technology commercialization. We also analyzed the moderating role of incubation support in the relationship between the leader's emotion and technology commercialization. The results contribute to the application of emotion in improving the commercialization of new technologies.

13.
Sci Technol Adv Mater ; 22(1): 695-717, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512177

RESUMO

In recent times, the supercritical carbon dioxide (scCO2) process has attracted increasing attention in fabricating diverse materials due to the attractive features of environmentally benign nature and economically promising character. Owing to these unique characteristics and high-penetrability, as well as diffusivity conditions of scCO2, this high-pressure technology, with mild operation conditions, cost-effective, and non-toxic, among others, is often applied to fabricate various organic and inorganic-based materials, resulting in the unique crystal architectures (amorphous, crystalline, and heterojunction), tunable architectures (nanoparticles, nanosheets, and aerogels) for diverse applications. In this review, we give an emphasis on the fabrication of various inorganic-based materials, highlighting the recent research on the driving factors for improving the quality of fabrication in scCO2, procedures for production and dispersion in scCO2, as well as common indicators utilized to assess quality and processing ability of materials. Next, we highlight the effects of specific properties of scCO2 towards synthesizing the highly functional inorganic-based nanomaterials. Finally, we summarize this compilation with interesting perspectives, aiming to arouse a more comprehensive utilization of scCO2 to broaden the horizon in exploring the green/eco-friendly processing of such versatile inorganic-based materials. Together, we firmly believe that this compilation endeavors to disclose the latent capability and universal prevalence of scCO2 in the synthesis and processing of inorganic-based materials.

14.
Nano Lett ; 21(19): 8447-8454, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34591497

RESUMO

Lithium-ion batteries (LIBs) are still facing safety problems, mainly due to dendrite growth on the anode that leads to combustion and explosion. Forming a stable solid electrolyte interface (SEI) layer is an effective way to suppress this. To induce the formation of stable SEI using simple methods at a low cost, we report an ultrathin and large-scale hexagonal boron nitride (h-BN)/polyimide (PI) layer that was coated on a commercial polypropylene (PP) separator. The formation of a stabilized SEI component induced by the h-BN coating layer is proposed, as suggested by theoretical calculations and confirmed by electrochemical analysis and spectroscopy. It effectively suppresses Li dendrite growth and reduces the consumption of active lithium. The separator also has good electrolyte wettability, excellent mechanical strength and thermal conductivity, and high thermal stability. When using the h-BN modified separator in a full cell, the capacity is extremely stable after long cycling and high temperature.

15.
Microorganisms ; 9(9)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34576867

RESUMO

As the problem of ocean warming worsens, the environmental adaptation potential of symbiotic Symbiodiniaceae and bacteria is directly related to the future and fate of corals. This study aimed to analyse the comprehensive community dynamics and physiology of these two groups of organisms in the coral Pocillopora sp. through indoor simulations of heat stress (which involved manually adjusting the temperature between both 26 °C and 34 °C). Heat treatment (≥30 °C) significantly reduced the abundance of Symbiodiniaceae and bacteria by more than 70%. After the temperature was returned to 26 °C for one month, the Symbiodiniaceae density was still low, while the absolute number of bacteria quickly recovered to 55% of that of the control. At this time point, the Fv/Fm value rose to 91% of the pretemperature value. The content of chlorophyll b associated with Cyanobacteria increased by 50% compared with that under the control conditions. Moreover, analysis of the Symbiodiniaceae subclade composition suggested that the relative abundance of C1c.C45, C1, and C1ca increased during heat treatment, indicating that they might constitute heat-resistant subgroups. We suggest that the increase in the absolute number of bacteria during the recovery period could be an important indicator of coral holobiont recovery after heat stress. This study provides insight into the cross-linked regulation of key symbiotic microbes in the coral Pocillopora sp. during high-temperature stress and recovery and provides a scientific basis for exploring the mechanism underlying coral adaptation to global warming.

16.
Anim Sci J ; 92(1): e13638, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34585472

RESUMO

The aim of this study was to compare the meat quality and evaluate the chemical composition of Chinese Ningdu yellow chicken of different weights once they have reached market age. Thirty hens at the day of age 118 were selected and divided into three groups according to their weight: light weight (1288.00 ± 69.78 g, n = 10), medium weight (1407.17 ± 39.40 g, n = 10), heavy weight (1581.6 ± 46.59 g, n = 10), and the differences in weight among these three groups are significant. Biochemical, histological, and metabonomic approaches were used to obtain index values of meat quality and chemical composition. Compared with meat from lighter chickens, muscle fiber density was significantly lower in heavier chickens, and meat pH was positively correlated with chicken weight. Though the amount of all measured amino acids were not different among three weight groups of chicken, the levels of several kinds of fatty acids exhibited significant differences or correlations, including linolenic acid, arachidonic acid, myristic acid, oleic acid, and docosahexaenoic acid (DHA). These results contribute to help customers choose the optimal chicken weight depending upon the food to be cooked.

17.
Front Immunol ; 12: 723885, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566982

RESUMO

Eukaryotic translation initiation factor 4B (eIF4B) plays an important role in mRNA translation initiation, cell survival and proliferation in vitro. However, its function in vivo is poorly understood. Here, we identified that eIF4B knockout (KO) in mice led to embryonic lethality, and the embryos displayed severe liver damage. Conditional KO (CKO) of eIF4B in adulthood profoundly increased the mortality of mice, characterized by severe pathological changes in several organs and reduced number of peripheral blood lymphocytes. Strikingly, eIF4B CKO mice were highly susceptible to viral infection with severe pulmonary inflammation. Selective deletion of eIF4B in lung epithelium also markedly promoted replication of influenza A virus (IAV) in the lung of infected animals. Furthermore, we observed that eIF4B deficiency significantly enhanced the expression of several important inflammation-associated factors and chemokines, including serum amyloid A1 (Saa1), Marco, Cxcr1, Ccl6, Ccl8, Ccl20, Cxcl2, Cxcl17 that are implicated in recruitment and activation of neutrophiles and macrophages. Moreover, the eIF4B-deficient mice exhibited impaired natural killer (NK) cell-mediated cytotoxicity during the IAV infection. Collectively, the results reveal that eIF4B is essential for mouse survival and host antiviral responses, and establish previously uncharacterized roles for eIF4B in regulating normal animal development and antiviral immunity in vivo.

18.
Nat Commun ; 12(1): 5714, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588446

RESUMO

Sulfur is an important electrode material in metal-sulfur batteries. It is usually coupled with metal anodes and undergoes electrochemical reduction to form metal sulfides. Herein, we demonstrate, for the first time, the reversible sulfur oxidation process in AlCl3/carbamide ionic liquid, where sulfur is electrochemically oxidized by AlCl4- to form AlSCl7. The sulfur oxidation is: 1) highly reversible with an efficiency of ~94%; and 2) workable within a wide range of high potentials. As a result, the Al-S battery based on sulfur oxidation can be cycled steadily around ~1.8 V, which is the highest operation voltage in Al-S batteries. The study of sulfur oxidation process benefits the understanding of sulfur chemistry and provides a valuable inspiration for the design of other high-voltage metal-sulfur batteries, not limited to Al-S configurations.

19.
Viruses ; 13(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34452366

RESUMO

Southern rice black-streaked dwarf virus (SRBSDV), a Fijivirus in the Reoviridae family, is transmitted by the white-backed planthopper (Sogatella furcifera, WBPH), a long-distance migratory insect, and presents a serious threat to rice production in Asia. It was first discovered in China's Guangdong Province in 2001 and has been endemic in the south of China and north of Vietnam for two decades, with serious outbreaks in 2009, 2010, and 2017. In this study, we evaluated the resistance of 10 dominant rice varieties from southern China, where the virus overwinters and accumulates as a source of early spring reinfection, against this virus by artificial inoculation. The results showed that in all tested varieties there was no immune resistance, but there were differences in the infection rate, with incidence rates from 21% to 90.7%, and in symptom severity, with plant weight loss from 66.71% to 91.20% and height loss from 34.1% to 65.06%. Additionally, and valuably, the virus titer and the insect vector virus acquisition potency from diseased plants were significantly different among the varieties: an over sixfold difference was determined between resistant and susceptible varieties, and there was a positive correlation between virus accumulation and insect vector virus acquisition. The results can provide a basis for the selection of rice varieties in southern China to reduce the damage of SRBSDV in this area and to minimize the reinfection source and epidemics of the virus in other rice-growing areas.

20.
Front Microbiol ; 12: 715223, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394065

RESUMO

Rice stripe mosaic disease (RSMD) is caused by the rice stripe mosaic virus (RSMV; genus Cytorhabdovirus, family Rhabdoviridae). In recent years, significant progress has been made in understanding several aspects of the disease, especially its geographical distribution, symptoms, vectors, gene functions, and control measures. Since RSMD was first detected in southern China in 2015, it has been found in more and more rice growing areas and has become one of the most important rice diseases in southern China. RSMV is transmitted by the leafhopper Recilia dorsalis in a persistent-propagative manner, inducing yellow stripes, a slight distortion of leaves, increased tillers, and empty grains in rice plants. The virus has a negative-sense single-strand RNA genome of about 12.7 kb that encodes seven proteins: N, P, P3, M, G, P6, and L. Several molecular and serological tests have been developed to detect RSMV in plants and insects. The disease cycle can be described as follows: RSMV and its vector overwinter in infected plants; viruliferous R. dorsalis adults transmit the virus to spring rice and lay eggs on the infected seedlings; the next generation of R. dorsalis propagate on infected seedlings, become viruliferous, disperse, and cause new disease outbreaks. Control measures include monitoring and accurate forecasting, selecting disease-resistant varieties, improving cultivation systems, covering rice seedling nurseries with insect-proof nets, and using pesticides rationally. Inappropriate cultivation systems, pesticide overuse, and climatic conditions contribute to epidemics by affecting the development of vector insects and their population dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...