Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Pharmacol Res ; 155: 104748, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32147403

RESUMO

The dysfunction of E3 ubiquitin ligases is important in the pathogenesis of many human diseases, as they play important roles in multiple cellular processes. In this review, we evaluated the structures, functions and clinical significance of two RING-type E3 ubiquitin ligases from the same subfamily, ring-finger protein 126 (RNF126) and breast cancer associated gene 2 (BCA2). Interestingly, the expression of RNF126 and BCA2 are regulated by multiple signaling pathways, including EGFR, ERK, AKT, and NF-κB. RNF126 and BCA2 appear to be functional mediators for not only DNA damage repair but also cancer development. Due to their significant functions in cell proliferation and DNA damage repair, RNF126 and BCA2 may be two potential diagnostic biomarkers and therapeutic targets for cancers.

2.
Int J Biol Sci ; 16(4): 611-619, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32025209

RESUMO

Triple-negative breast cancer (TNBC) is one of the most malignant breast cancers lacking targeted therapeutics currently. We recently reported that mifepristone (MIF), a drug regularly used for abortion, suppresses TNBC cell growth by inhibiting KLF5 expression via inducing miR-153. However, its anticancer efficacy is only modest at high dose. In order to enhance the anticancer activities, a focused compound library containing 17 compounds by altering the sensitive metabolic region of mifepristone has been designed and synthesized. We first tested the cell growth inhibitory effects of these compounds in TNBC cell lines. Among them, FZU-00,003 displayed the most potent efficiency. FZU-00,003 suppresses TNBC cell growth, cell cycle progression and induces apoptosis more effectively than MIF does. Consistently, FZU-00,003 induces miR-153 expression and suppressed KLF5 expression at much lower dosages than MIF does. Furthermore, FZU-00,003 inhibits tumor growth more potently than MIF does. Taken together, the MIF derivative, FZU-00,003 may serve as a better therapeutic compound for TNBC than MIF.

3.
Sci Rep ; 10(1): 1804, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019974

RESUMO

Breast cancer patients often suffer from disease relapse and metastasis due to the presence of breast cancer stem-like cells (BCSCs). Numerous studies have reported that high levels of inflammatory factors, including tumor necrosis factor alpha (TNF-α), promote BCSCs. However, the mechanism by which TNF-α promotes BCSCs is unclear. In this study, we demonstrate that TNF-α up-regulates TAZ, a transcriptional co-activator promoting BCSC self-renewal capacity in human breast cancer cell lines. Depletion of TAZ abrogated the increase in BCSCs mediated by TNF-α. TAZ is induced by TNF-α through the non-canonical NF-κB pathway, and our findings suggest that TAZ plays a crucial role in inflammatory factor-promoted breast cancer stemness and could serve as a promising therapeutic target.

4.
Theranostics ; 10(4): 1833-1848, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32042339

RESUMO

Purpose: To determine the role of UCH-L1 in regulating ERα expression, and to evaluate whether therapeutic targeting of UCH-L1 can enhance the efficacy of anti-estrogen therapy against breast cancer with loss or reduction of ERα. Methods: Expressions of UCH-L1 and ERα were examined in breast cancer cells and patient specimens. The associations between UCH-L1 and ERα, therapeutic response and prognosis in breast cancer patients were analyzed using multiple databases. The molecular pathways by which UCH-L1 regulates ERα were analyzed using immunoblotting, qRT-PCR, immunoprecipitation, ubiquitination, luciferase and ChIP assays. The effects of UCH-L1 inhibition on the efficacy of tamoxifen in ERα (-) breast cancer cells were tested both in vivo and in vitro. Results: UCH-L1 expression was conversely correlated with ERα status in breast cancer, and the negative regulatory effect of UCH-L1 on ERα was mediated by the deubiquitinase-mediated stability of EGFR, which suppresses ERα transcription. High expression of UCH-L1 was associated with poor therapeutic response and prognosis in patients with breast cancer. Up-regulation of ERα caused by UCH-L1 inhibition could significantly enhance the efficacy of tamoxifen and fulvestrant in ERα (-) breast cancer both in vivo and in vitro. Conclusions: Our results reveal an important role of UCH-L1 in modulating ERα status and demonstrate the involvement of UCH-L1-EGFR signaling pathway, suggesting that UCH-L1 may serve as a novel adjuvant target for treatment of hormone therapy-insensitive breast cancers. Targeting UCH-L1 to sensitize ER negative breast cancer to anti-estrogen therapy might represent a new therapeutic strategy that warrants further exploration.

5.
Oncogene ; 39(11): 2358-2376, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31911619

RESUMO

Dysregulated metabolism contributes to cancer initiation and progression, but the key drivers of these pathways are just being discovered. Here, we report a critical role for proline catabolism in non-small cell lung cancer (NSCLC). Proline dehydrogenase (PRODH) is activated to reduce proline levels by the chromatin remodeling factor lymphoid-specific helicase (LSH), an epigenetic driver of NSCLC. PRODH promotes NSCLC tumorigenesis by inducing epithelial to mesenchymal transition (EMT) and IKKα-dependent inflammatory genes, including CXCL1, LCN2, and IL17C. Consistently, proline addition promotes the expression of these inflammatory genes, as well as EMT, tumor cell proliferation, and migration in vitro and tumor growth in vivo, while the depletion or inhibition of PRODH blocks these phenotypes. In summary, we reveal an essential metabolic pathway amenable to targeting in NSCLC.

6.
J Exp Med ; 217(3)2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31961917

RESUMO

Cancer cells often proliferate under hypoxia and reprogram their metabolism. However, how to find targets to effectively block the hypoxia-associated metabolic pathways remains unclear. Here, we developed a tool to conveniently calculate electrons dissipated in metabolic transformations. Based on the law of conservation of electrons in chemical reactions, we further built up an electron balance model for central carbon metabolism, and it can accurately outline metabolic plasticity under hypoxia. Our model specifies that glutamine metabolism reprogrammed for biosynthesis of lipid and/or proline actually acts as the alternative electron bin to enable electron transfer in proliferating cells under hypoxia. Inhibition of both proline biosynthesis and lipogenesis can synergistically suppress cancer cell growth under hypoxia and in vivo tumor onset. Therefore, our model helps to reveal combinations of potential targets to inhibit tumor growth by blocking hypoxia-rewired metabolism and provides a useful tool for future studies on cancer metabolism.

7.
Cell Mol Life Sci ; 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31637449

RESUMO

Ubiquitin modification plays significant roles in protein fate determination, signaling transduction, and cellular processes. Over the past 2 decades, the number of studies on ubiquitination has demonstrated explosive growth. E3 ubiquitin ligases are the key enzymes that determine the substrate specificity and are involved in cancer. Several recent studies shed light on the functions and mechanisms of HECTD3 E3 ubiquitin ligase. This review describes the progress in the recent studies of HECTD3 in cancer and other diseases. We propose that HECTD3 is a potential biomarker and a therapeutic target, and discuss the future directions for HECTD3 investigations.

8.
iScience ; 21: 1-18, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31654850

RESUMO

Aberrant RAS signaling activation is common in cancers with even few Ras mutations, indicating alternative dysregulation other than genetic mutations. We identified a Ras GTPase-activating gene RASA5/SYNGAP1, at the common 6p21.3 deletion, methylated/downregulated in multiple carcinomas and different from other RASA family members (RASA1-RASA4), indicating its special functions in tumorigenesis. RASA5 mutations are rare, unlike other RASA members, whereas its promoter CpG methylation is frequent in multiple cancer cell lines and primary carcinomas and associated with patient's poor survival. RASA5 expression inhibited tumor cell migration/invasion and growth in mouse model, functioning as a tumor suppressor. RASA5 suppressed RAS signaling, depending on its Ras GTPase-activating protein catalytic activity, which could be counteracted by oncogenic HRas Q61L mutant. RASA5 knockdown enhanced Ras signaling to promote tumor cell growth. RASA5 also inhibited epithelial-mesenchymal transition (EMT) through regulating actin reorganization. Thus, epigenetic inactivation of RASA5 contributing to hyperactive RAS signaling is involved in Ras-driven human oncogenesis.

9.
J Biol Chem ; 294(47): 17837-17847, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31624151

RESUMO

The Krüppel-like factor 5 (KLF5) transcription factor is highly expressed in basal type breast cancer and promotes breast cancer cell proliferation, survival, migration, and tumorigenesis. KLF5 protein stability is regulated by ubiquitination. In this study, ubiquitin-specific protease 3 (USP3) was identified as a new KLF5 deubiquitinase by genome-wide siRNA library screening. We demonstrated that USP3 interacts with KLF5 and stabilizes KLF5 via deubiquitination. USP3 knockdown inhibits breast cancer cell proliferation in vitro and tumorigenesis in vivo, which can be partially rescued by ectopic expression of KLF5. Furthermore, we observed a positive correlation between USP3 and KLF5 protein expression levels in human breast cancer samples. These findings suggest that USP3 is a new KLF5 deubiquitinase and that USP3 may represent a potential therapeutic target for breast cancer.

10.
J Biol Chem ; 294(46): 17471-17486, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31594861

RESUMO

Constitutive activation of signal transducer and activator of transcription 3 (STAT3) occurs in ∼70% of human cancers, and STAT3 is regarded as one of the most promising targets for cancer therapy. However, specific direct STAT3 inhibitors remain to be developed. Oridonin is an ent-kaurane plant-derived diterpenoid with anti-cancer and anti-inflammatory activities. Here, using an array of cell-based and biochemical approaches, including cell proliferation and apoptosis assays, pulldown and reporter gene assays, site-directed mutagenesis, and molecular dynamics analyses, we report that a thiazole-derived oridonin analogue, CYD0618, potently and directly inhibits STAT3. We found that CYD0618 covalently binds to Cys-542 in STAT3 and suppresses its activity through an allosteric effect, effectively reducing STAT3 dimerization and nuclear translocation, as well as decreasing expression of STAT3-targeted oncogenes. Remarkably, CYD0618 not only strongly inhibited growth of multiple cancer cell lines that harbor constitutive STAT3 activation, but it also suppressed in vivo tumor growth via STAT3 inhibition. Taken together, our findings suggest Cys-542 as a druggable site for selectively inhibiting STAT3 and indicate that CYD0618 represents a promising lead compound for developing therapeutic agents against STAT3-driven diseases.

11.
Acta Biochim Biophys Sin (Shanghai) ; 51(10): 1064-1070, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31559416

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with poor clinical outcomes and without effective targeted therapies. Numerous studies have suggested that HDAC inhibitors (TSA/SAHA) may be effective in TNBCs. Proline oxidase, also known as proline dehydrogenase (POX/PRODH), is a key enzyme in the proline metabolism pathway and plays a vital role in tumorigenesis. In this study, we found that HDAC inhibitors (TSA/SAHA) significantly increased POX expression and autophagy through activating AMPK. Depletion of POX decreased autophagy and increased apoptosis induced by HDAC inhibitors in TNBC cells. These results suggest that POX contributes to cell survival under chemotherapeutic stresses and might serve as a potential target for treatment of TNBC.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Prolina Oxidase/genética , Ativação Transcricional/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias de Mama Triplo Negativas/genética
12.
Cancer Res ; 79(17): 4399-4411, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31289134

RESUMO

The Hippo pathway plays a critical role in cell growth and tumorigenesis. The activity of TEA domain transcription factor 4 (TEAD4) determines the output of Hippo signaling; however, the regulation and function of TEAD4 has not been explored extensively. Here, we identified glucocorticoids (GC) as novel activators of TEAD4. GC treatment facilitated glucocorticoid receptor (GR)-dependent nuclear accumulation and transcriptional activation of TEAD4. TEAD4 positively correlated with GR expression in human breast cancer, and high expression of TEAD4 predicted poor survival of patients with breast cancer. Mechanistically, GC activation promoted GR interaction with TEAD4, forming a complex that was recruited to the TEAD4 promoter to boost its own expression. Functionally, the activation of TEAD4 by GC promoted breast cancer stem cells maintenance, cell survival, metastasis, and chemoresistance both in vitro and in vivo. Pharmacologic inhibition of TEAD4 inhibited GC-induced breast cancer chemoresistance. In conclusion, our study reveals a novel regulation and functional role of TEAD4 in breast cancer and proposes a potential new strategy for breast cancer therapy. SIGNIFICANCE: This study provides new insight into the role of glucocorticoid signaling in breast cancer, with potential for clinical translation.

13.
Acta Biochim Biophys Sin (Shanghai) ; 51(8): 778-790, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31314051

RESUMO

Chondrogenic differentiation is a coordinated biological process orchestrated by various cell signaling pathways, involving complex pathways regulated at both transcriptional and post-transcriptional levels. Long noncoding RNAs (lncRNAs) are emerging as important regulators in the modulation of multiple cell processes. However, the potential roles of lncRNAs and their regulatory mechanisms in chondrogenic differentiation remain largely unclear. In this study, microarray was performed to detect the expression profiles of lncRNAs and messenger RNAs (mRNAs) during chondrogenic differentiation of murine chondrogenic cell line ATDC5. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to explore their functions. Coding-noncoding co-expression (CNC) and competing endogenous RNA (ceRNA) networks were also constructed with bioinformatics methods. The results revealed that 1009 lncRNAs and 1206 mRNAs were differentially regulated during chondrogenic differentiation. GO and KEGG pathway analysis indicated that the principal functions of the transcripts were associated with system development and extracellular matrix-receptor interaction, TGF-ß signaling, and PI3K-Akt signaling pathways. The CNC network showed that lncRNA AK136902 was positively correlated with prostaglandin F receptor (FP). The ceRNA network covered 3 lncRNAs, 121 miRNAs and 241 edges. The upregulated lncRNA AK136902, AK016344, and ENSMUST00000180767 might promote chondrogenic differentiation by acting as ceRNAs. Knockdown of lncRNA AK136902 could inhibit the mRNA expression of FP and other chondrogenic related genes, including Aggrecan and Col2a1 during chondrogenic differentiation. Our results provide a new perspective on the modulation of lncRNAs during chondrogenic differentiation.


Assuntos
Condrócitos/metabolismo , Condrogênese , Oligonucleotídeos Antissenso , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Agrecanas/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Condrócitos/citologia , Colágeno Tipo II/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Prostaglandina/metabolismo , Fator de Crescimento Transformador beta/metabolismo
14.
Int J Biol Sci ; 15(8): 1723-1732, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31360114

RESUMO

Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death among women in the worldwide. Triple-negative breast cancer (TNBC) has a poor clinical outcome. The antitumor efficacy of Ilamycins, natural products with anti-tuberculosis activity isolated from deep sea-derived Streptomyces atratus, in TNBC has not been investigated, and the mechanisms remain elusive. Here, we demonstrated that Ilamycin-E, but not -F, decreases cell viability, inhibits G1/S cell cycle progression, and promotes apoptosis in the TNBC cell lines HCC1937 and MDA-MB-468. Ilamycin E promotes apoptosis via activation of endoplasmic reticulum (ER) stress, increasing the expression of CHOP, and down-regulating the expression of anti-apoptotic protein Bcl-2. Depletion of CHOP or overexpression of Bcl2 significantly rescued Ilamycin E-induced apoptosis. These findings indicate that Ilamycin E has anti-cancer activity in TNBC.

15.
Int J Biol Sci ; 15(8): 1733-1742, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31360115

RESUMO

The transcription factor KLF5 (Krüpple-like factor 5) is highly expressed in basal-like breast cancer (BLBC), which promotes cell proliferation, survival, migration and stemness, serving as a potential therapeutic target. In the current study, a super-enhancer (SE) was identified to be located downstream of the KLF5 gene in BLBC cell lines, HCC1806 and HCC1937. JQ-1, a BRD4 inhibitor, inhibits the expression and activity of KLF5 in both HCC1806 and HCC1937 cells in a time- and dose-dependent manner. Compound 870, an in-house BRD4 inhibitor, exhibited higher potency than JQ-1 to inhibit KLF5 and BLBC growth by arresting cells in G1 phase. Additionally, THZ1, a CDK7 inhibitor, also inhibits KLF5 and BLBC growth in a similar manner. Our findings suggested that KLF5 is regulated by SE, and modulation of SE could be an effective therapeutic strategy for treating BLBC.

16.
Int J Biol Sci ; 15(7): 1523-1532, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31337981

RESUMO

Background: The phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway is hyperactivated in lung cancer and regulates a broad range of cellular processes, including proliferation, survival, angiogenesis, and metastasis. Thus PI3K is considered a promising target for therapy. To date, PI3K inhibitors have not been approved for lung cancer. Recent studies showed that the antipsychotic agent flupentixol induced apoptosis of lung cancer cell, however the anti-tumor mechanism of flupentixol remains unclear. Methods: (1) The idock software simulated the molecular docking between the PI3Kα protein and flupentixol. (2) Inhibition of PI3Kα by the flupentixol was examined by in vitro kinase assays. (3) The cytotoxicity of flupentixol on the NSCLC cell lines was tested by MTT assays. (4) We treated A549 and H661 cells with flupentixol and then measured the percentage of apoptotic cells by the Annexin V/PI analysis. (5) We investigated the effect of flupentixol on the expression of critical PI3K/AKT signaling pathway proteins, further analyzed on the cleavage of PARP and caspase-3 by Western blotting. (6) BALB/C nude mice were subcutaneously injected with A549 cells to evaluate the effect of flupentixol on the growth of lung carcinoma. Results: Structural analysis of the predicted binding conformation suggested that flupentixol docks to the ATP binding pocket of PI3Kα. Kinase assays demonstrate that flupentixol indeed inhibited the PI3Kα kinase activity. Flupentixol exhibited cytotoxicity in lung cancer cell lines A549 and H661 in a dose- and time-dependent manner. Furthermore, flupentixol more strongly inhibited the phosphorylation of AKT (T308 and S473) and the expression of its downstream target gene Bcl-2 than two known PI3K inhibitors (BYL719 and BKM120). Flupentixol induced apoptosis as measured by PARP and caspase-3 cleavage. Finally, flupentixol significantly suppressed A549 xenograft growth in BALB/C nude mice. Conclusions: Flupentixol could be docked to the PI3Kα protein and specifically inhibit the PI3K/AKT pathway and survival of lung cancer cells in vitro and in vivo. As an old drug, flupentixol is a new PI3K inhibitor that may be used for the treatment of lung cancers.

17.
Science ; 364(6446)2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31221830

RESUMO

Ruminants are the only extant mammalian group possessing bony (osseous) headgear. We obtained 221 transcriptomes from bovids and cervids and sequenced three genomes representing the only two pecoran lineages that convergently lack headgear. Comparative analyses reveal that bovid horns and cervid antlers share similar gene expression profiles and a common cellular basis developed from neural crest stem cells. The rapid regenerative properties of antler tissue involve exploitation of oncogenetic pathways, and at the same time some tumor suppressor genes are under strong selection in deer. These results provide insights into the evolutionary origin of ruminant headgear as well as mammalian organ regeneration and oncogenesis.

18.
Int J Cancer ; 145(5): 1371-1381, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30807646

RESUMO

The Cullin 7 (CUL7) gene encodes a member of the cullin family of E3 ubiquitin ligases. Accumulated evidence suggests that CUL7 is oncogenic. However, the mechanism by which CUL7 improves cancer cell survival has not been fully elucidated. Here, we reported that CUL7 confers anti-apoptotic functions by interacting with Caspase-8. CUL7 prevents Caspase-8 activation by promoting Caspase-8 modification with non-degradative polyubiquitin chains at K215. CUL7 knockdown sensitized cancer cells to TRAIL-induced apoptosis in vitro and in nude mice. These results suggest that CUL7 limits extrinsic apoptotic signaling by promoting Caspase-8 ubiquitination.


Assuntos
Neoplasias da Mama/enzimologia , Caspase 8/metabolismo , Proteínas Culina/metabolismo , Neoplasias do Colo do Útero/enzimologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/imunologia , Proteínas Culina/genética , Feminino , Células HEK293 , Células HeLa , Xenoenxertos , Humanos , Células MCF-7 , Camundongos , Proteínas Recombinantes/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ubiquitinação , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
19.
J Pathol ; 246(4): 497-507, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30101462

RESUMO

Krüpple-like factor 5 (KLF5) is required for the development of the embryo and multiple organs, such as the lung and intestine. KLF5 plays a pro-proliferative and oncogenic role in several carcinomas, including breast cancer. However, its role in normal mammary gland development and oncogenesis has not been elucidated in vivo. In this study, we used mammary gland-specific Klf5 conditional knockout mice derived by mating Klf5-LoxP and MMTV-Cre mice. The genetic ablation of Klf5 suppresses mammary gland ductal elongation and lobuloalveolar formation. Klf5 deficiency inhibits mammary epithelial cell proliferation, survival, and stem cell maintenance. Klf5 promotes mammary stemness, at least partially, by directly promoting the transcription of Slug. Finally, Klf5 depletion suppressed PyMT-induced mammary gland tumor cell stemness, tumor initiation, and growth in vivo. Slug also mediated these functions of Klf5 in vivo. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Fatores de Transcrição Kruppel-Like/metabolismo , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Feminino , Humanos , Fatores de Transcrição Kruppel-Like/deficiência , Fatores de Transcrição Kruppel-Like/genética , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfogênese , Células-Tronco Neoplásicas/patologia , Fenótipo , Transdução de Sinais , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Carga Tumoral
20.
J Cell Mol Med ; 22(11): 5188-5195, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30145807

RESUMO

TNFα-induced protein 2 (TNFAIP2) is a primary response gene of TNFα. TNFAIP2 is highly expressed in immune cells and the urinary bladder. The expression of TNFAIP2 is regulated by multiple transcription factors and signalling pathways, including NF-κB, KLF5 and retinoic acid. Physiologically, TNFAIP2 appears to be a multiple functional mediator not only for inflammation, angiogenesis and tunneling nanotube (TNT) formation but also as a regulator of cell proliferation and migration. The expression of TNFAIP2 is frequently abnormal in human cancers and in infectious diseases. Due to its significant functions in cell proliferation, angiogenesis, migration and invasion, TNFAIP2 could be a potential diagnostic biomarker and therapeutic target for cancer.


Assuntos
Doenças Transmissíveis/genética , Citocinas/genética , Neoplasias/genética , Neovascularização Patológica/genética , Proliferação de Células/genética , Doenças Transmissíveis/patologia , Humanos , NF-kappa B/genética , Neoplasias/patologia , Neovascularização Patológica/patologia , Transdução de Sinais , Fator de Transcrição RelA/genética , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA