Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 928
Filtrar
1.
Endoscopy ; 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33429441

RESUMO

BACKGROUND AND STUDY AIMS: Qualified esophagogastroduodenoscopy (EGD) is a prerequisite for detecting upper gastrointestinal lesions especially early gastric cancer (EGC). Our previous report showed that artificial intelligence system could monitor blind spots during EGD. Here, we updated the system to a new one (named ENDOANGEL), verified its effectiveness on improving endoscopy quality and pre-tested its performance on detecting EGC in a multi-center randomized controlled trial. PATIENTS AND METHODS: ENDOANGEL was developed using deep convolutional neural networks and deep reinforcement learning. Patients undergoing EGD examination in 5 hospitals were randomly assigned to ENDOANGEL-assisted (EA) group or normal control (NC) group. The primary outcome was the number of blind spots. The second outcome includes performance of ENDOANGEL on predicting EGC in clinical setting. RESULTS: 1,050 patients were recruited and randomized. 498 and 504 patients in EA and NC groups were respectively analyzed. Compared with NC, the number of blind spots was less (5.382±4.315 vs. 9.821±4.978, p<0.001) and the inspection time was prolonged (5.400±3.821 min vs. 4.379±3.907 min, p<0.001) in EA group. In the 498 patients from EA group, 196 gastric lesions with pathological results were identified. ENDOANGEL correctly predicted all 3 EGC (1 mucosal carcinoma and 2 high-grade neoplasia) and 2 advanced gastric cancer, with a per-lesion accuracy of 84.69%, sensitivity of 100% and specificity of 84.29% for detecting GC. CONCLUSIONS: The results of the multi-center study confirmed that ENDOANGEL is an effective and robust system to improve the quality of EGD and has the potential to detect EGC in real time.

2.
Sci Rep ; 11(1): 772, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33437038

RESUMO

Aberrant mechanical factor is one of the etiologies of the intervertebral disc (IVD) degeneration (IVDD). However, the exact molecular mechanism of spinal mechanical loading stress-induced IVDD has yet to be elucidated due to a lack of an ideal and stable IVDD animal model. The present study aimed to establish a stable IVDD mouse model and evaluated the effect of aberrant spinal mechanical loading on the pathogenesis of IVDD. Eight-week-old male mice were treated with lumbar spine instability (LSI) surgery to induce IVDD. The progression of IVDD was evaluated by µCT and Safranin O/Fast green staining analysis. The metabolism of extracellular matrix, ingrowth of sensory nerves, pyroptosis in IVDs tissues were determined by immunohistological or real-time PCR analysis. The apoptosis of IVD cells was tested by TUNEL assay. IVDD modeling was successfully produced by LSI surgery, with substantial reductions in IVD height, BS/TV, Tb.N. and lower IVD score. LSI administration led to the histologic change of disc degeneration, disruption of the matrix metabolism, promotion of apoptosis of IVD cells and invasion of sensory nerves into annulus fibrosus, as well as induction of pyroptosis. Moreover, LSI surgery activated Wnt signaling in IVD tissues. Mechanical instability caused by LSI surgery accelerates the disc matrix degradation, nerve invasion, pyroptosis, and eventually lead to IVDD, which provided an alternative mouse IVDD model.

3.
Nucleic Acids Res ; 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33450015

RESUMO

Approximately 13% of the human genome can fold into non-canonical (non-B) DNA structures (e.g. G-quadruplexes, Z-DNA, etc.), which have been implicated in vital cellular processes. Non-B DNA also hinders replication, increasing errors and facilitating mutagenesis, yet its contribution to genome-wide variation in mutation rates remains unexplored. Here, we conducted a comprehensive analysis of nucleotide substitution frequencies at non-B DNA loci within noncoding, non-repetitive genome regions, their ±2 kb flanking regions, and 1-Megabase windows, using human-orangutan divergence and human single-nucleotide polymorphisms. Functional data analysis at single-base resolution demonstrated that substitution frequencies are usually elevated at non-B DNA, with patterns specific to each non-B DNA type. Mirror, direct and inverted repeats have higher substitution frequencies in spacers than in repeat arms, whereas G-quadruplexes, particularly stable ones, have higher substitution frequencies in loops than in stems. Several non-B DNA types also affect substitution frequencies in their flanking regions. Finally, non-B DNA explains more variation than any other predictor in multiple regression models for diversity or divergence at 1-Megabase scale. Thus, non-B DNA substantially contributes to variation in substitution frequencies at small and large scales. Our results highlight the role of non-B DNA in germline mutagenesis with implications to evolution and genetic diseases.

4.
Hortic Res ; 8(1): 14, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33419990

RESUMO

Passion fruit (Passiflora edulis Sims) is an economically valuable fruit that is cultivated in tropical and subtropical regions of the world. Here, we report an ~1341.7 Mb chromosome-scale genome assembly of passion fruit, with 98.91% (~1327.18 Mb) of the assembly assigned to nine pseudochromosomes. The genome includes 23,171 protein-coding genes, and most of the assembled sequences are repetitive sequences, with long-terminal repeats (LTRs) being the most abundant. Phylogenetic analysis revealed that passion fruit diverged after Brassicaceae and before Euphorbiaceae. Ks analysis showed that two whole-genome duplication events occurred in passion fruit at 65 MYA and 12 MYA, which may have contributed to its large genome size. An integrated analysis of genomic, transcriptomic, and metabolomic data showed that 'alpha-linolenic acid metabolism', 'metabolic pathways', and 'secondary metabolic pathways' were the main pathways involved in the synthesis of important volatile organic compounds (VOCs) in passion fruit, and this analysis identified some candidate genes, including GDP-fucose Transporter 1-like, Tetratricopeptide repeat protein 33, protein NETWORKED 4B isoform X1, and Golgin Subfamily A member 6-like protein 22. In addition, we identified 13 important gene families in fatty acid pathways and eight important gene families in terpene pathways. Gene family analysis showed that the ACX, ADH, ALDH, and HPL gene families, especially ACX13/14/15/20, ADH13/26/33, ALDH1/4/21, and HPL4/6, were the key genes for ester synthesis, while the TPS gene family, especially PeTPS2/3/4/24, was the key gene family for terpene synthesis. This work provides insights into genome evolution and flavor trait biology and offers valuable resources for the improved cultivation of passion fruit.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33420687

RESUMO

Cadmium (Cd) pollution is a prominent environment problem, and great interests have been developed towards the molecular mechanism of Cd accumulation in plants. In this study, we conducted combined transcriptomic, proteomic and biochemical approaches to explore the detoxification of a Cd-hyperaccumulating turnip landrace exposed to 5 µM (T5) and 25 µM (T25) Cd treatments. A total of 1090 and 2111 differentially expressed genes (DEGs) and 161 and 303 differentially expressed proteins (DEPs) were identified in turnips under T5 and T25, respectively. However, poor correlations were observed in expression changes between mRNA and protein levels. The enriched KEGG pathways of DEGs with a high proportion (> 80%) of upregulated genes were focused on the flavonoid biosynthesis, sulphur metabolism and glucosinolate biosynthesis pathways, whereas those of DEPs were enriched on the glutathione metabolism pathway. This result suggests that these pathways contribute to Cd detoxification in turnips. Furthermore, induced antioxidant enzymes, heat stock proteins and stimulated protein acetylation modification seemed to play important roles in Cd tolerance in turnips. In addition, several metal transporters were found responsible for the Cd accumulation capacity of turnips. This study may serve as a basis for breeding low-Cd-accumulating vegetables for foodstuff or high-Cd-abstracting plants for phytoremediation.

6.
Anticancer Drugs ; Publish Ahead of Print2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33394687

RESUMO

Evodiamine (Evo), a quinazoline alkaloid and one of the most typical polycyclic heterocycles, is mainly isolated from Evodia rugulosa. Vasculogenic mimicry (VM) is a newly identified way of angiogenesis during tumor neovascularization, which is prevalent in a variety of highly invasive tumors. The purpose of this study was to investigate the effect and mechanism of Evo on VM in human colorectal cancer (CRC) cells. The number of VM structures was calculated by the three-dimensional culture of human CRC cells. Wound-healing was used to detect the migration of HCT116 cells. Gene expression was detected by reverse transcription-quantitative PCR assay. CD31/ PAS staining was used to identify VM. Western blotting and immunofluorescence were used to detect protein levels. The results showed that Evo inhibited the migration of HCT116 cells, as well as the formation of VM. Furthermore, Evo reduced the expression of hypoxia-inducible factor 1-alpha (HIF-1α), VE-cadherin, VEGF, MMP2, and MMP9. In a model of subcutaneous xenotransplantation, Evo also inhibited tumor growth and VM formation. Our study demonstrates that Evo could inhibit VM in CRC cells HCT116 and reduce the expression of HIF-1α, VE-cadherin, VEGF, MMP2, and MMP9.

7.
Postgrad Med ; 133(1): 48-56, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32758047

RESUMO

OBJECTIVES: A questionnaire which provides desirable reliability and validity has been previously developed to assess the disease awareness of diagnosed chronic kidney disease (CKD) patients. However, conventional paper questionnaires often have disadvantages, including recall bias. To substantially improve this, we therefore aimed to explore the feasibility of developing a smartphone-based electronic version (e-version) based upon its original paper version and subsequently tested its validity, reliability, and applicability. METHODS: A pilot study was conducted at Guangdong Provincial Hospital of Chinese Medicine in Guangzhou, China, during August 2019. The e-version had identical content to the paper version and was adapted in terms of layout and assisted functions via the Wechat-incorporated Wen-Juan-Xing platform. Eligible patients with diagnosed CKD were invited to participate and were assigned the e-version. Randomly selected respondents received a test-retest of the same e-version 2 weeks after their first completion. In some instances, psychometric properties, including validity and reliability of the e-version, were examined. In others, its clinical application was also tested, which included comparisons among the clinical profiles of patients who had/had not responded to the questionnaire as well as patients with above or below average questionnaire scores. RESULTS: Of the 225 patients screened, 217 were enrolled to participate, with a response rate of 52.5%. Desirable reliability (Cronbachα = 0.962, ICC for total scores = 0.948), while good convergent validity (Cronbachα = 0.962) and low discriminant validity (one extracted component), of the e-version were detected. Performing inter-group comparisons highlighted statistical differences in terms of higher education level (z = -2.436, P = 0.015) and earlier CKD stages (z = -1.978, P = 0.048), with these patients often preferring to respond. No significant differences were detected in the clinical profiles between respondents who obtained an above or below average questionnaire score. CONCLUSION: The e-version is reliable but was not shown to be a valid approach. Audiences with higher education levels and less advanced disease condition may prefer to respond to the e-version. Adaptation of this e-questionnaire, from its original paper version, may not be a direct transition and meticulous modifications may be required during the transition process. TRIAL REGISTRATION: Chinese Clinical Trial Registry (ChiCTR1900024633).

8.
Int J Biol Macromol ; 166: 1377-1386, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33161084

RESUMO

The influence of extrusion temperature on protein components and aggregation of wheat gluten (WG) and wheat gluten-peanut oil complexes (WPE) during extrusion with the addition of peanut oil was studied. Gliadin content and wheat gluten extractability decreased and glutenin content increased as extrusion temperature increased. At the same extrusion temperature, the gliadin content in WPE was higher than that in WG. The addition of peanut oil also resulted in the higher gluten extractability of WPE than WG. Increasing extrusion temperature also increased the average molecular weight of glutenin and gliadin. The decreased free sulfhydryl (SH) and increased disulfide bonds (SS) indicated that wheat gluten aggregation was promoted, via disulfide cross-linking, when extrusion temperature increased. Furthermore, increased temperature promoted the aggregation of gluten by increasing sulfhydryl-disulfide bond (SH-SS) interchange during extrusion. When the secondary structure of wheat gluten was analyzed by circular dichroism, the relative gluten α-helix content was decreased and the relative ß-sheet content was increased. Also, the results of scanning electron microscopy (SEM) showed the size of the resultant particles increased with temperature, and the mean particle size of WPE was higher than WG. This research shows that extrusion temperature promotes gluten aggregation of WG and WPE. It provides basic data to support the study of gluten-lipid extrusion in the field of protein processing.

9.
Acta Biomater ; 119: 432-443, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33148429

RESUMO

Strontium, a popular osteogenic component, has been incorporated into various types of orthopaedic biomaterials to enhance bone regeneration. Strontium performs dual effects in promoting bone formation and inhibiting bone resorption. Previous studies have focused on the effects of strontium ions (Sr2+) in regulating stem cell behavior to initiate regenerative capacity. However, its mechanisms for regulating the fate and homeostasis of stem cells have not been fully elucidated. In this study, the promotive effect of Sr2+ on the osteogenic differentiation of mesenchymal stem cells was confirmed both in vitro and in vivo. Interestingly, in response to Sr2+ treatment, stem cells performed asymmetric cell division to balance stemness maintenance and osteogenic differentiation. In initiating osteogenic differentiation, Sr2+ maintained more cells in the cell cycle by upregulating the population of S and G2/M phase cells, and this increase in the cell population contributed to enhanced osteogenic differentiation. The divided cells with different cell fates were observed, with one daughter cell maintained stemness, while the other committed to osteogenic lineage. Further investigation revealed that Sr2+ activated noncanonical Wnt signaling to regulate the expression and distribution of the Par complex, thus regulating cell division. As a result, the daughter cells committed to different cell fates due to the discriminately activation of osteogenic transcription factors caused by asymmetrically distributed Par3 and aPKC. The results of this study could facilitate the design of biomaterials for bone regeneration by providing a better understanding of cell fate determination regulated by strontium.

10.
Drug Deliv Transl Res ; 11(1): 279-291, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32514702

RESUMO

The coverage of hyaluronic acid (HA) on the impaired cartilage should be the precondition to exert its beneficial effect on knee osteoarthritis (KOA) according to the pharmacological mechanism. However, the intra-articular distribution of HA might be correlated with the route of drug delivery. Forty-two cadaver knees with radiographic evidence of osteoarthritis were given anteromedial (AM) or medial midpatellar (MMP) injection of HA (molecular weight 600-1500 kD) followed by gait stimulation. Although 2.5 ml HA delivered through both routes failed to cover the entire cartilage, HA covered 96.12% cartilage of patellofemoral joint (PFJ) and 71.44% of medial femorotibial joint (FTJ) through MMP route, whereas mainly distributed into FTJ and posterior condyles through AM route. HA in the MMP group distributed more in PFJ than that in the AM group (P < 0.001), but no significant difference presented in medial FTJ (P = 0.084). The clinical efficacy was also associated with the route of drug delivery. One hundred patients with unilateral mild-to-moderate KOA were recruited and randomly assigned to receive five weekly HA injections with AM route (n = 50) or MMP route (n = 50). Patients in the MMP group obtained better improvement in WOMAC index total score, pain score, stiffness score, and Lequesne index total score over the entire follow-up period, as compared to patients in the AM group (all P < 0.01). More patients in the MMP group claimed pain relief (71.7%, P = 0.024) and felt satisfying (63.1%, P = 0.007) than in the AM group at the end of follow-up. Therefore, intra-articular HA injection through MMP route is recommended in treating mild-to-moderate KOA. Graphical Abstract .

11.
J Ethnopharmacol ; 266: 113447, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33022338

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Corni Fructus (CF), the red fruit of Cornus officinalis Siebold & Zucc, has been used both as food and medicinal herb in traditional Chinese medicine (TCM). Our previous studies showed that Yougui pills and Bushenhuoxue formula, both TCM prescriptions containing Corni Fructus (CF), have protective effects on osteoarthritis (OA). However, the underlying detailed components in both TCM prescriptions that play therapeutic roles have not been fully defined. Morroniside is a major iridoid glycoside and one of the quality control metrics of CF, but the effects of morroniside on OA remain largely elusive. AIM OF THE STUDY: The study aims to assess the therapeutic effects of morroniside on cartilage degeneration using a mouse model of OA. MATERIAL AND METHODS: 8-week-old male C57BL/6J mice were randomly divided into 4 groups: Sham, destabilization of the medial meniscus (DMM)-treated with vehicle, DMM-treated with low dose morroniside and DMM-treated with high dose morroniside. Histological staining, immunostaining, and TUNEL staining were conducted to detect changes in tissue morphology, expression of key molecules in chondrocytes, and chondrocyte apoptosis, respectively. Osteophyte formation, meniscus calcification, and subchondral sclerosis were quantitated using micro-CT. The expression of chondrocyte markers was also analyzed by Western blot in primary chondrocytes derived from mice treated with morroniside. RESULTS: Morroniside attenuated the progression of OA in mice, resulting in substantially reduced osteophyte formation and subchondral sclerosis and lower OARSI scores. Specifically, morroniside significantly promoted cartilage matrix synthesis by increasing collagen type II expression and suppressing chondrocyte pyroptosis. Morroniside administration led to inhibition of matrix metalloproteinase-13 (MMP13), Caspase-1 and nod-like receptor protein-3 (NLRP3) expression in DMM mice and IL-1ß-stimulated chondrocytes. In addition, morroniside attenuated the progression of OA by enhancing chondrocyte proliferation and inhibiting chondrocyte apoptosis. Morroniside also attenuated the progression of OA by inhibiting nuclear factor-κB (NF-κB) signaling. CONCLUSION: Morroniside was protective against cartilage matrix degradation and reduced DMM-induced chondrocyte pyroptosis and apoptosis by the inhibition of NF-κB signaling.

12.
Food Chem ; 339: 127885, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32866704

RESUMO

The current study develops an effective, convenient, low-cost, and environmentally friendly method for determining trans-resveratrol (TRA) in peanut oils, the unique proportion of peanut oil, by employing natural cotton fibers without any pretreatment as extraction sorbent and an in-syringe extraction device. The primary factors affecting the extraction recovery are optimized in detail. The condition of 200.0 mg of cotton fibers, six push-pull times, 2.0 mL of n-hexane as washing solvent and 2.0 mL of ethanol as desorption solvent is selected as the best. The linear range is demonstrated to be 10-1000 ng/g with a satisfactory correlation coefficient (R2 = 0.9995), while the limit of detection is calculated as 2.47 ng/g. In addition, the recoveries of TRA are obtained in the range of 93.8-104.4% with RSDs less than 5.5%. Finally, the developed method is successfully applied to determine TRA concentrations in commercial peanut oils and other edible oils.


Assuntos
Arachis/química , Cromatografia Líquida de Alta Pressão/métodos , Fibra de Algodão , Óleo de Amendoim/química , Resveratrol/análise , Adsorção , Arachis/metabolismo , Hexanos/química , Isomerismo , Limite de Detecção , Reprodutibilidade dos Testes , Resveratrol/isolamento & purificação , Extração em Fase Sólida/instrumentação , Extração em Fase Sólida/métodos , Espectrofotometria Ultravioleta
13.
J Nanosci Nanotechnol ; 21(1): 382-391, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33213638

RESUMO

To improve the CO2 fixation ability of dry desulfurization ash (DDA), a DDA must be modified by chemical methods. At the micron level, the changes in microstructure and chemical composition before and after DDA modification were analysed by Scanning Electron Microscope (SEM) and Energy Dispersive Spectroscopy (EDS), and the reaction mechanism of the modification process was inferred. On the other hand, the chemical and mineral phase compositions of the modified DDA and its solid products were analysed by X ray Fluorescence (XRF) and X-ray diffraction (XRD). In addition, the microstructure of the modified DDA before and after sequestration at nanometre resolution was studied by SEM-EDS so that the curing mechanism of the modified DDA was clearly defined. Then, the effects of the solid-liquid ratio, temperature, pressure and reaction time on the sequestration of CO2 in the modified DDA were studied with aqueous carbonation. The results showed that the higher the temperature is, the higher the solid-liquid ratio, and the lower initial pressure is, the less the CO2 sequestered in the modified DDA and the less the carbon sequestration capacity of the modified DDA. Under the experimental conditions, the carbonation efficiency of the modified DDA could reach 94.42%, and 1 ton of modified DDA could sequester up to 50.61 kg CO2. Compared with conventional DDA, the carbon sequestration capacity is effectively improved. The kinetic data confirmed that the fitting correlation of the quasi-first-order kinetics equation is more significant. The smaller the solid-liquid ratio is, the lower the temperature, the higher the initial pressure, and the higher the rate constant of the quasi-first-order kinetics equation.

14.
PLoS One ; 15(12): e0243359, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33320893

RESUMO

Osteoarthritis (OA) is the most common arthropathy, characterized by progressive degeneration of the articular cartilage. Currently, there are no disease-modifying approaches for OA treatment. Adeno-associated virus (AAV)-mediated gene therapy has recently become a potential treatment for OA due to its exceptional characteristics; however, the tropism and transduction efficiency of different AAV serotypes to articular joints and the safety profile of AAV applications are still unknown. The present study aims to screen an ideal AAV serotype to efficiently transfer genes to arthritic cartilage. AAV vectors of different serotypes expressing eGFP protein were injected into the knee joint cavities of mice, with all joint tissues collected 30 days after AAV injection. The transduction efficiency of AAVs was quantified by assessing the fluorescent intensities of eGFP in the cartilage of knee joints. Structural and morphological changes were analyzed by toluidine blue staining. Changes to ECM metabolism and pyroptosis of chondrocytes were determined by immunohistochemical staining. Fluorescence analysis of eGFP showed that eGFP was expressed in the cartilage of knee joints injected with each AAV vector. Quantification of eGFP intensity indicated that AAV2, 7 and 8 had the highest transduction efficiencies. Both toluidine blue staining and Mankin score showed that AAV6 aggravated cartilage degeneration. The analysis of key molecules in ECM metabolism suggested that AAV5 and 7 significantly reduced collagen type II, while AAV9 increased ADAMTS-4 but decreased MMP-19. In addition, transduction with AAV2, 5, 7 and 8 had no obvious effect on pyroptosis of chondrocytes. Comprehensive score analysis also showed that AAV2 had the highest score in intra-articular gene transfer. Collectively, our findings point to AAV2 as the best AAV serotype candidate for gene transfer on arthritic cartilage, resulting in minimal impact to ECM metabolism and pyroptosis of chondrocytes.


Assuntos
Artrite Experimental , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Terapia Genética , Vetores Genéticos , Articulação do Joelho/metabolismo , Parvovirinae , Proteína ADAMTS4/biossíntese , Proteína ADAMTS4/genética , Animais , Artrite Experimental/genética , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Artrite Experimental/terapia , Cartilagem Articular/patologia , Condrócitos/patologia , Colágeno Tipo II/biossíntese , Colágeno Tipo II/genética , Articulação do Joelho/patologia , Masculino , Metaloproteinases da Matriz Secretadas/biossíntese , Metaloproteinases da Matriz Secretadas/genética , Camundongos , Transdução Genética
15.
PLoS One ; 15(12): e0242620, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33270669

RESUMO

Wild species of Gossypium ssp. are an important source of traits for improving commercial cotton cultivars. Previous reports show that Gossypium herbaceum L. and Gossypium nelsonii Fryx. have better disease resistance characteristics than commercial cotton varieties. However, chromosome ploidy and biological isolation make it difficult to hybridize diploid species with the tetraploid Gossypium hirsutum L. We developed a new allotetraploid cotton genotype (A1A1G3G3) using a process of distant hybridization within wild cotton species to create new germplasms. First of all, G. herbaceum and G. nelsonii were used for interspecific hybridization to obtain F1 generation. Afterwards, apical meristems of the F1 diploid cotton plants were treated with colchicine to induce chromosome doubling. The new interspecific F1 hybrid and S1 cotton plants originated from chromosome duplication, were tested via morphological and molecular markers and confirmed their tetraploidy through flowrometric and cytological identification. The S1 tetraploid cotton plants was crossed with a TM-1 line and fertile hybrid offspring were obtained. These S2 offsprings were tested for resistance to Verticillium wilt and demonstrated adequate tolerance to this fungi. The results shows that the new S1 cotton line could be used as parental material for hybridization with G. hirsutum to produce pathogen-resistant cotton hybrids. This new S1 allotetraploid genotype will contributes to the enrichment of Gossypium germplasm resources and is expected to be valuable in polyploidy evolutionary studies.


Assuntos
Resistência à Doença/genética , Gossypium/anatomia & histologia , Gossypium/genética , Melhoramento Vegetal , Poliploidia , Segregação de Cromossomos/genética , Cromossomos de Plantas/genética , Fibra de Algodão , Cruzamentos Genéticos , DNA de Plantas/genética , Fertilidade , Flores/anatomia & histologia , Genótipo , Gossypium/microbiologia , Repetições de Microssatélites/genética , Especificidade de Órgãos , Ploidias , Característica Quantitativa Herdável , Reprodutibilidade dos Testes , Verticillium/fisiologia
16.
Nat Cell Biol ; 22(12): 1436-1446, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33257808

RESUMO

X-chromosome dosage compensation in female placental mammals is achieved by X-chromosome inactivation (XCI). Human pre-implantation embryos are an exception, in which dosage compensation occurs by X-chromosome dampening (XCD). Here, we examined whether XCD extends to human prenatal germ cells given their similarities to naive pluripotent cells. We found that female human primordial germ cells (hPGCs) display reduced X-linked gene expression before entering meiosis. Moreover, in hPGCs, both X chromosomes are active and express the long non-coding RNAs X active coating transcript (XACT) and X inactive specific transcript (XIST)-the master regulator of XCI-which are silenced after entry into meiosis. We find that XACT is a hPGC marker, describe XCD associated with XIST expression in hPGCs and suggest that XCD evolved in humans to regulate X-linked genes in pre-implantation embryos and PGCs. Furthermore, we found a unique mechanism of X-chromosome regulation in human primordial oocytes. Therefore, future studies of human germline development must consider the sexually dimorphic X-chromosome dosage compensation mechanisms in the prenatal germline.

17.
Signal Transduct Target Ther ; 5(1): 297, 2020 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-33361757

RESUMO

In vertebrates, the type 1 parathyroid hormone receptor (PTH1R) is a critical regulator of skeletal development and homeostasis; however, how it is modulated is incompletely understood. Here we report that deleting Kindlin-2 in osteoblastic cells using the mouse 10-kb Dmp1-Cre largely neutralizes the intermittent PTH-stimulated increasing of bone volume fraction and bone mineral density by impairing both osteoblast and osteoclast formation in murine adult bone. Single-cell profiling reveals that Kindlin-2 loss increases the proportion of osteoblasts, but not mesenchymal stem cells, chondrocytes and fibroblasts, in non-hematopoietic bone marrow cells, with concomitant depletion of osteoblasts on the bone surfaces, especially those stimulated by PTH. Furthermore, haploinsufficiency of Kindlin-2 and Pth1r genes, but not that of either gene, in mice significantly decreases basal and, to a larger extent, PTH-stimulated bone mass, supporting the notion that both factors function in the same genetic pathway. Mechanistically, Kindlin-2 interacts with the C-terminal cytoplasmic domain of PTH1R via aa 474-475 and Gsα. Kindlin-2 loss suppresses PTH induction of cAMP production and CREB phosphorylation in cultured osteoblasts and in bone. Interestingly, PTH promotes Kindlin-2 expression in vitro and in vivo, thus creating a positive feedback regulatory loop. Finally, estrogen deficiency induced by ovariectomy drastically decreases expression of Kindlin-2 protein in osteocytes embedded in the bone matrix and Kindlin-2 loss essentially abolishes the PTH anabolic activity in bone in ovariectomized mice. Thus, we demonstrate that Kindlin-2 functions as an intrinsic component of the PTH1R signaling pathway in osteoblastic cells to regulate bone mass accrual and homeostasis.

18.
Dev Cell ; 55(5): 588-602.e7, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33290695

RESUMO

Liquid-liquid phase separation (LLPS) compartmentalizes transcriptional condensates for gene expression, but little is known about how this process is controlled. Here, we showed that depletion of IPMK, encoding inositol polyphosphate multikinase, promotes autophagy and lysosomal function and biogenesis in a TFEB-dependent manner. Cytoplasmic-nuclear trafficking of TFEB, a well-characterized mechanism by which diverse signaling pathways regulate TFEB activity, is not evidently altered by IPMK depletion. We demonstrated that nuclear TFEB forms distinct puncta that colocalize with the Mediator complex and with mRNAs of target lysosomal genes. TFEB undergoes LLPS in vitro. IPMK directly interacts with and inhibits LLPS of TFEB and also dissolves TFEB condensates. Depletion of IPMK increases the number of nuclear TFEB puncta and the co-localization of TFEB with Mediator and mRNAs of target genes. Our study reveals that nuclear-localized IPMK acts as a chaperone to inhibit LLPS of TFEB to negatively control its transcriptional activity.

19.
J Neurosci ; 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293358

RESUMO

A multidimensional inflammatory response ensues after status epilepticus (SE), driven partly by cyclooxygenase-2 mediated activation of prostaglandin EP2 receptors. The inflammatory response is typified by astrocytosis, microgliosis, erosion of the blood-brain barrier (BBB), formation of inflammatory cytokines, and brain infiltration of blood-borne monocytes. Our previous studies have shown that inhibition of monocyte brain invasion or systemic administration of an EP2 receptor antagonist relieves multiple deleterious consequences of SE. Here we identify those effects of EP2 antagonism that are reproduced by conditional ablation of EP2 receptors in immune myeloid cells and show that systemic EP2 antagonism blocks monocyte brain entry in male mice. The induction of hippocampal IL-6 after pilocarpine SE was nearly abolished in EP2 conditional knockout mice. Serum albumin levels in the cortex, a measure of BBB breakdown, were significantly higher after SE in EP2-sufficient mice but not in EP2 conditional knockouts. EP2 deficiency in innate immune cells accelerated the recovery from sickness behaviors following SE. Surprisingly, neurodegeneration was not alleviated in myeloid conditional knockouts. Systemic EP2 antagonism prevented monocyte brain infiltration and provided broader rescue of SE-induced effects than myeloid EP2 ablation, including neuroprotection and broader suppression of inflammatory mediators. Reporter expression indicated the cellular target of CD11b-driven Cre was circulating myeloid cells but, unexpectedly, not microglia. These findings indicate that activation of EP2 receptors on immune myeloid cells drives substantial deficits in behavior and disrupts the BBB after SE. The benefits of systemic EP2 antagonism can be attributed, in part, to blocking brain recruitment of blood-borne monocytes.SIGNIFICANCE STATEMENTUnabated seizures reduce quality of life, promote the development of epilepsy, and can be fatal. We previously identified activation of prostaglandin EP2 receptors as a driver of undesirable consequences of seizures. However, the relevant EP2-expressing cell types remain unclear. Here we identify peripheral innate immune cells as a driver of the EP2-related negative consequences of seizures. Removal of EP2 from peripheral immune cells was beneficial, abolishing production of a key inflammatory cytokine, accelerating weight regain, and limiting behavioral deficits. These findings provide evidence that EP2 engagement on peripheral immune and brain endothelia contributes to the deleterious effects of SE, and will assist in the development of beneficial therapies to enhance quality of life in individuals who suffer prolonged seizures.

20.
Sci Signal ; 13(660)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262294

RESUMO

We previously reported that an ortholog of STING regulates infection by picorna-like viruses in Drosophila In mammals, STING is activated by the cyclic dinucleotide 2'3'-cGAMP produced by cGAS, which acts as a receptor for cytosolic DNA. Here, we showed that injection of flies with 2'3'-cGAMP induced the expression of dSTING-regulated genes. Coinjection of 2'3'-cGAMP with a panel of RNA or DNA viruses resulted in substantially reduced viral replication. This 2'3'-cGAMP-mediated protection was still observed in flies with mutations in Atg7 and AGO2, genes that encode key components of the autophagy and small interfering RNA pathways, respectively. By contrast, this protection was abrogated in flies with mutations in the gene encoding the NF-κB transcription factor Relish. Transcriptomic analysis of 2'3'-cGAMP-injected flies revealed a complex response pattern in which genes were rapidly induced, induced after a delay, or induced in a sustained manner. Our results reveal that dSTING regulates an NF-κB-dependent antiviral program that predates the emergence of interferons in vertebrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA