Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.579
Filtrar
1.
ACS Nano ; 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33052666

RESUMO

Droplet transport on, and shedding from, surfaces is ubiquitous in nature and is a key phenomenon governing applications including biofluidics, self-cleaning, anti-icing, water harvesting, and electronics thermal management. Conventional methods to achieve spontaneous droplet shedding enabled by surface-droplet interactions suffer from low droplet transport velocities and energy conversion efficiencies. Here, by spatially confining the growing droplet and enabling relaxation via rationally designed grooves, we achieve single-droplet jumping of micrometer and millimeter droplets with dimensionless jumping velocities v* approaching 0.95, significantly higher than conventional passive approaches such as coalescence-induced droplet jumping (v* ≈ 0.2-0.3). The mechanisms governing single-droplet jumping are elucidated through the study of groove geometry and local pinning, providing guidelines for optimized surface design. We show that rational design of grooves enables flexible control of droplet-jumping velocity, direction, and size via tailoring of local pinning and Laplace pressure differences. We successfully exploit this previously unobserved mechanism as a means for rapid removal of droplets during steam condensation. Our study demonstrates a passive method for fast, efficient, directional, and surface-pinning-tolerant transport and shedding of droplets having micrometer to millimeter length scales.

2.
Neurotoxicology ; 2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33053366

RESUMO

Vincristine (VCR), an alkaloid extracted from vinca, is often used in combination with other chemotherapeutic drugs to treat a variety of cancers, such as acute lymphoblastic leukaemia (ALL), malignant lymphoma, and neuroblastoma. However, VCR possesses dose-dependent neurotoxicity, which is the main factor restricting its application. Vincristine-induced peripheral neuropathy (VIPN) not only limits the dose of VCR and leads to the discontinuation of treatment but also triggers serious damage to the physical and mental health of patients. In addition, VIPN brings huge healthcare costs to patients and society. Individuals with VIPN often exhibit mechanical allodynia, sensory/tactile disorders, and numbness in the hands and feet. Unfortunately, VIPN is easily ignored due to its variable symptoms, which gives rise to insufficient research on the aetiology and pathogenesis of this disease, thereby resulting in a lack of appropriate preventive and therapeutic management. We performed a comprehensive review of the latest findings on VIPN in terms of symptoms, risk factors, potential mechanisms, and prevention and treatment measures. The purpose was to help clinicians better understand and accurately diagnose VIPN, select appropriate intervention measures and reduce the damage to cancer patients.

3.
Int J Mol Sci ; 21(20)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053834

RESUMO

Cyclin-dependent kinase 8 (CDK8) and its regulatory partner Cyclin C (CycC) play conserved roles in modulating RNA polymerase II (Pol II)-dependent gene expression. To understand the structure and function relations of CDK8, we analyzed the structures of human and Drosophila CDK8 proteins using molecular dynamics simulations, combined with functional analyses in Drosophila. Specifically, we evaluated the structural differences between hCDK8 and dCDK8 to predict the effects of the LXXLL motif mutation (AQKAA), the P154L mutations, and drug binding on local structures of the CDK8 proteins. First, we have observed that both the LXXLL motif and the kinase activity of CDK8 are required for the normal larval-to-pupal transition in Drosophila. Second, our molecular dynamic analyses have revealed that hCDK8 has higher hydrogen bond occupation of His149-Asp151 and Asp151-Asn156 than dCDK8. Third, the substructure of Asp282, Phe283, Arg285, Thr287 and Cys291 can distinguish human and Drosophila CDK8 structures. In addition, there are two hydrogen bonds in the LXXLL motif: a lower occupation between L312 and L315, and a relatively higher occupation between L312 and L316. Human CDK8 has higher hydrogen bond occupation between L312 and L316 than dCDK8. Moreover, L312, L315 and L316 in the LXXLL motif of CDK8 have the specific pattern of hydrogen bonds and geometries, which could be crucial for the binding to nuclear receptors. Furthermore, the P154L mutation dramatically decreases the hydrogen bond between L312 and L315 in hCDK8, but not in dCDK8. The mutations of P154L and AQKAA modestly alter the local structures around residues 154. Finally, we identified the inhibitor-induced conformational changes of hCDK8, and our results suggest a structural difference in the drug-binding site between hCDK8 and dCDK8. Taken together, these results provide the structural insights into the roles of the LXXLL motif and the kinase activity of CDK8 in vivo.

4.
Arch Virol ; 2020 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-33011831

RESUMO

In 2019, flocks of Muscovy ducks presented with clinical signs typical of MDPV infection. The MDPV GD201911 strain was isolated by inoculating samples from positive birds into Muscovy duck embryos. Challenge with the isolate GD201911 caused typical MDPV disease symptoms and resulted in 25%-40% mortality, depending on the challenge dose, indicating the high pathogenicity of GD201911 for Muscovy ducks. Genome sequencing and phylogenetic analysis demonstrated that GD201911 clustered with recombinant MDPV strains, indicating that recombinant MDPV is circulating in China. Epidemiological monitoring should be performed continuously to assist with decision making for disease control.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33009700

RESUMO

Alkanol dehydration rates catalyzed by hydronium ions are enhanced by the dimensions of steric confinements of zeolite pores as well as by intraporous intermolecular interactions with other alkanols. The higher rates with zeolite MFI having pores smaller than those of zeolite BEA for dehydration of secondary alkanols, 3-heptanol and 2-methyl-3-hexanol, is caused by the lower activation enthalpy in the tighter confinements of MFI that offsets a less positive activation entropy. The higher activity in BEA than in MFI for dehydration of a tertiary alkanol, 2-methyl-2-hexanol, is primarily attributed to the reduction of the activation enthalpy by stabilizing intraporous interactions of the C ß -H transition state with surrounding alcohol molecules. Overall, we show that the positive impact of zeolite confinements results from the stabilization of transition state provided by the confinement and intermolecular interaction of alkanols with the transition state, which is impacted by both the size of confines and structure of alkanols in the E1 pathway of dehydration.

6.
Sci Rep ; 10(1): 18160, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33097742

RESUMO

Recent years have witnessed tremendous progress of intelligent robots brought about by mimicking human intelligence. However, current robots are still far from being able to handle multiple tasks in a dynamic environment as efficiently as humans. To cope with complexity and variability, further progress toward scalability and adaptability are essential for intelligent robots. Here, we report a brain-inspired robotic platform implemented by an unmanned bicycle that exhibits scalability of network scale, quantity and diversity to handle the changing needs of different scenarios. The platform adopts rich coding schemes and a trainable and scalable neural state machine, enabling flexible cooperation of hybrid networks. In addition, an embedded system is developed using a cross-paradigm neuromorphic chip to facilitate the implementation of diverse neural networks in spike or non-spike form. The platform achieved various real-time tasks concurrently in different real-world scenarios, providing a new pathway to enhance robots' intelligence.

8.
J Diabetes Res ; 2020: 3950404, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33083494

RESUMO

Aims: Sarcopenia is a common condition in older individuals, especially in the elderly with type 2 diabetes mellitus (T2DM). The aim of the present study was to examine the risk factors for sarcopenia in elderly individuals with T2DM and the effects of metformin. Methods: A total of 1732 elderly with T2DM were recruited to this cross-sectional observational study, and we analyzed the data using logistic regression analyses. Skeletal muscle mass, grip strength, and usual gait speed were measured to diagnose sarcopenia according to the criteria of the Asian Working Group for Sarcopenia, combined with expert consensus on sarcopenia in China. Results: The overall prevalence of sarcopenia was 10.37% of the participants. In the multivariate analysis, sex, age, educational level, and BMI were risk factors for sarcopenia, with women more likely to develop sarcopenia relative to men (OR = 2.539, 95% CI = 1.475-4.371; P < 0.05). We observed that sarcopenia increased with age and decreased with increasing BMI and educational level (P < 0.05). Participants who took metformin alone or combined with other drugs exhibited a lower risk for sarcopenia than those who took no medication (OR = 0.510, 95% CI = 0.288-0.904 and OR = 0.398, 95% CI = 0.225-0.702, respectively; P < 0.05). Conclusions: We showed that being female and at an older age, lower educational level, and lower BMI were risk factors for sarcopenia in elderly T2DM and that metformin acted as a protective agent against sarcopenia in these patients.

9.
Langmuir ; 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33085898

RESUMO

Indocyanine green (ICG) is a near-infrared (NIR) fluorescent dye for extensive biomedical application. However, its fluorescence intensity is limited by its poor aqueous stability and concentration-dependent aggregation. To overcome these limitations, ICG self-assembled nanobubbles (ICG-NBs) with an average size of 244.6 nm are fabricated. In the ICG-NB assembled structures, the ICG molecules are arrayed on the gas-liquid interface by the hydrophobic interaction with the gas core and hydrophilic heads with water. Results show that ICG-NBs exhibited good monodispersity and excellent fluorescence and size stability. Compared with ICG solution, the ICG-NBs indicate the enhanced quantum yield and fluorescence intensity. The surface-enhanced Raman scattering (SERS) spectra and fluorescence lifetime measurement demonstrate that the ICG molecule assembled NBs could result in the changes of molecular vibration and time-resolved intensity decays of ICG. Thus, the ICG-NBs could be more beneficial for optical imaging in clinical applications in the future.

10.
Cancer Lett ; 497: 137-153, 2020 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-33080309

RESUMO

Arsenic, a human carcinogen, causes various human cancers, including those of the skin, lung, and liver. Hepatocellular carcinomas (HCCs), which have high mortality, are common malignancies worldwide. Tumor-associated macrophages (TAMs), which are considered to be similar to M2-polarized macrophages, promote tumor invasion and progression. Small non-coding RNAs (miRNAs) regulate expression of genes involved in progression of various malignancies. Extracellular vesicles (EVs), as mediators of cell communication, pass specific miRNAs directly from TAMs to tumor cells, promoting tumor pathogenesis and metastasis. In HCCs, large tumor suppressor kinase 1 (LATS1), functions as a tumor suppressor. However, the molecular mechanism by which miRNA modulates LATS1 expression in HCCs remains unclear. The results show that exposure to arsenite, increased miR-15b levels and induced M2 polarization of THP-1 cells. Elevated levels of miR-15b were transferred from arsenite-treated-THP-1 (As-THP-1) cells to HCC cells via miR-15b in EVs inhibited activation of the Hippo pathway by targeting LATS1, and was involved in promoting the proliferation, migration, and invasion of HCC cells. In conclusion, miR-15b in EVs from As-THP-1 cells is transferred to HCC cells, in which it targets and downregulates LATS1 expression and promotes the proliferation, migration, and invasion of HCC cells.

11.
J Affect Disord ; 279: 292-298, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33096327

RESUMO

OBJECTIVE: This study aimed to analyze time to rehospitalization in patients with bipolar mania discharged on long-acting injectable antipsychotics (LAIs) or oral antipsychotics (OAPs). Additionally, temporal trends in LAI prescription were investigated. METHODS: Patients with bipolar mania discharged from the study hospital on antipsychotics between 2006 and 2018 were included. Survival analysis was used to compare time to rehospitalization within one year of discharge between patients discharged on LAIs and OAPs, and between FGA-LAIs (first- generation antipsychotic) and SGA-LAIs (second-generation antipsychotic). The Cochrane-Armitage trend test was used to test whether a temporal trend existed for LAI prescription rates during the study period. RESULTS: The LAI group (n = 224) had a significantly lower rehospitalization rate and a significantly longer time to rehospitalization than the OAP group (n = 3836). Rehospitalization rate and time to rehospitalization were not significantly different between patients discharged on FGA-LAIs or SGA-LAIs. The LAI prescription rate grew significantly from 2.20% in 2006 to 11.58% in 2018 (Z = 5.5843, p < 0.0001). The prescription rate of SGA-LAIs also increased significantly (Z = 7.7141, p < 0.0001), but not the prescription rate of FGA-LAIs. LIMITATIONS: The treatment allocation is not randomized in this retrospective study. Furthermore, various clinical characteristics were unavailable in our analysis, such as symptom severity, functional impairment, and others. CONCLUSIONS: LAIs were significantly superior to OAPs in reducing rehospitalization risk. However, SGA-LAIs were comparable with FGA-LAIs in reducing rehospitalization risk. Use of LAIs increased significantly in discharged patients with bipolar disorder during the study period, especially SGA-LAIs.

12.
Infect Dis Poverty ; 9(1): 143, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33076968

RESUMO

BACKGROUND: Effective management of imported cases is an important part of epidemic prevention and control. Hainan Province, China reported 168 coronavirus disease 2019 (COVID-19), including 112 imported cases on February 19, 2020, but successfully contained the epidemic within 1 month. We described the epidemiological and clinical characteristics of COVID-19 in Hainan and compared these features between imported and local cases to provide information for other international epidemic areas. METHODS: We included 91 patients (56 imported and 35 local cases) from two designated hospitals for COVID-19 in Haikou, China, from January 20 to February 19, 2020. Data on the demographic, epidemiological, clinical and laboratory characteristics were extracted from medical records. Patients were followed until April 21, 2020, and the levels of antibodies at the follow-ups were also analysed by the Wilcoxon matched-pairs signed ranks test. RESULTS: Of the 91 patients, 78 (85.7%) patients were diagnosed within the first three weeks after the first case was identified (Day 1: Jan 22, 2020), while the number of local cases started to increase during the third week. No new cases occurred after Day 29. Fever and cough were two main clinical manifestations. In total, 15 (16.5%) patients were severe, 14 (15.4%) had complicated infections, nine (9.9%) were admitted to the intensive care unit, and three died. The median duration of viral shedding in feces was longer than that in nasopharyngeal swabs (19 days vs 16 days, P = 0.007). Compared with local cases, imported cases were older and had a higher incidence of fever and concurrent infections. There was no difference in outcomes between the two groups. IgG was positive in 92.8% patients (77/83) in the follow-up at week 2 after discharge, while 88.4% patients (38/43) had a reduction in IgG levels in the follow-up at week 4 after discharge, and the median level was lower than that in the follow-up at week 2 (10.95 S/Cut Off (S/CO) vs 15.02 S/CO, P <  0.001). CONCLUSION: Imported cases were more severe than local cases but had similar prognoses. The level of IgG antibodies declined from week 6 to week 8 after onset. The short epidemic period in Hainan suggests that the epidemic could be quickly brought under control if proper timely measures were taken.

13.
Eur Spine J ; 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33091143

RESUMO

BACKGROUND: To compare clinical effect and safety between posterior fossa decompression with duraplasty (PFDD) and posterior fossa decompression without duraplasty (PFD) in treatment of Chiari type I malformation and basilar impression. METHODS: A comprehensive computer search was conducted from 2000 to 2019. The quality assessment was performed by the QUADAS-2 tool. The clinical value of comparison between PFDD and PFD was evaluated by using the pooled estimate of sensitivity and specificity. In addition, sensitivity analysis and bias analysis were applied to ensure the accuracy of the results. RESULTS: Finally, 468 patients were enrolled in 6 studies and ultimately met the eligibility criteria. The PFDD and PFD groups were 282 and 186, respectively. The meta-analysis showed no significant difference in the Chicago Chiari Outcome Scale (COSS score) (MD = 0.14, 95% CI [-0.23, 0.50], P = 0.47; P = heterogeneity = 0.86, I2 = 0%). Meanwhile, Significant difference existed in length of stay (MD = -1.08, 95% CI [-1.32, -0.84], P = 0.001; heterogeneity P < 0.000001, I2 = 85%) and complications (OR = 0.35, 95%CI [0.20, 0.62], P = 0.0003; P for Heterogeneity = 0.04, I2 = 56%). CONCLUSION: PFD is a more efficient and safer therapy than PFDD in the treatment of Chiari type I malformation with basilar impression.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 247: 119066, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33091736

RESUMO

Protein's biological function is critically associated with its structural feature, which is encoded in its amino acid sequence. For evaluation of conformational fluctuation and folding mechanism, DFT calculations were performed on the model compound - lysine dipeptide (LYSD) in gas phase to demonstrate the correlation between amide-I vibrations and secondary structure. Molecular dynamics simulations were carried out for the structural dynamics of LYSD in aqueous solution. The results show that LYSD tends form C7eq, C5, ß, PPII and α conformations in the gas phase and primarily presented PPII and α conformations in aqueous solution. The obtained amide-I vibrational frequencies of LYSD conformers were assigned, thus build the correlations between amide-I probes and secondary structure of LYSD. These results provide theoretical insights into the structural feature of LYSD through amide-I vibrations, and would shed light on site specific structural prediction of polypeptides.

15.
Sci Rep ; 10(1): 17984, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33093511

RESUMO

Clozapine treatment remains the gold standard for treatment-resistant schizophrenia. This study aimed to describe temporal trends in clozapine use at discharge among patients with schizophrenia at two of the largest public psychiatric hospitals in Taiwan over a twelve-year period. Patients with schizophrenia discharged from the two study hospitals between 2006 and 2017 (n = 24,101) were included in the analysis. Antipsychotic augmentation was defined as concomitant use of a second antipsychotic as augmentation to clozapine treatment. Changes in the rate of clozapine use and antipsychotic augmentation at discharge over time were analyzed using the Cochran-Armitage trend test. Patients discharged on clozapine had significantly longer hospital stays than other patients. The rate of clozapine use at discharge increased from 13.8% to 20.0% over time (Z = 6.88, p < .0001). Concomitant use of anticholinergic medication was more common in patients receiving antipsychotic augmentation than clozapine antipsychotic monotherapy. Among patients discharged on clozapine, the rate of augmentation with a second antipsychotic increased from 19.1% to 36.2% over time (Z = 6.58, p < .0001). Among patients receiving antipsychotic augmentation, use of another second-generation antipsychotic as the augmentation agent grew from 32.6% to 65.5% over time (Z = 8.90, p < .0001). The increase in clozapine use was accompanied by an increase in concomitant use of a second antipsychotic as augmentation during the study period. Further studies are warranted to clarify the risk/benefit of this augmentation strategy. Clozapine may still be underutilized, and educational programs are needed to promote clinical use of clozapine.

16.
Nature ; 586(7829): 378-384, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33057220

RESUMO

Neuromorphic computing draws inspiration from the brain to provide computing technology and architecture with the potential to drive the next wave of computer engineering1-13. Such brain-inspired computing also provides a promising platform for the development of artificial general intelligence14,15. However, unlike conventional computing systems, which have a well established computer hierarchy built around the concept of Turing completeness and the von Neumann architecture16-18, there is currently no generalized system hierarchy or understanding of completeness for brain-inspired computing. This affects the compatibility between software and hardware, impairing the programming flexibility and development productivity of brain-inspired computing. Here we propose 'neuromorphic completeness', which relaxes the requirement for hardware completeness, and a corresponding system hierarchy, which consists of a Turing-complete software-abstraction model and a versatile abstract neuromorphic architecture. Using this hierarchy, various programs can be described as uniform representations and transformed into the equivalent executable on any neuromorphic complete hardware-that is, it ensures programming-language portability, hardware completeness and compilation feasibility. We implement toolchain software to support the execution of different types of program on various typical hardware platforms, demonstrating the advantage of our system hierarchy, including a new system-design dimension introduced by the neuromorphic completeness. We expect that our study will enable efficient and compatible progress in all aspects of brain-inspired computing systems, facilitating the development of various applications, including artificial general intelligence.

17.
Mol Neurobiol ; 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33029740

RESUMO

Recent evidence suggests that hypoxia preconditioning can alter the microRNA (miRNA) profile of extracellular vesicles (EVs) and has better neuroprotective effects when enriched miRs are delivered to recipients. However, the roles of exosomal miRNAs in regulating ischaemia-reperfusion (IR)-induced pain hypersensitivity are largely unknown. Thus, we isolated EVs from normoxia-conditioned neurons (Nor-VSC EVs) and Hypo-VSC EVs by ultracentrifugation. After the initial screening by a microarray analysis and quantitative RT-PCR (qRT-PCR), miR-126-3p, which was detected as the most altered miR in the Hypo-VSC EVs, was further confirmed by applying GW4869 to inhibit exosomal secretion. Moreover, transfection with a miR-126 mimic obviously increased miR-126-3p expression in Nor-VSC EVs, whereas a miR-126 inhibitor prevented the increase in miR-126-3p in Hypo-VSC EVs. A rat model of pain was established by performing 8-min occlusion of the aorta. Following IR, compared with the Nor-VSC EVs- or antagomir-126-injected rats, the Hypo-VSC EVs-injected rats displayed improved pain hypersensitivity demonstrated as higher PWT and PWL values. Mechanistically, PIK3R2 is a target of miR-126-3p and might be a modulator of the phosphoinositide 3-kinase (PI3K)/Akt pathway as the PIK3R2 and PI3K immunoreactivities in each group were changed in opposite directions. Compared with the controls, higher protein levels of PI3K and phosphorylated Akt but lower levels of phosphorylated nuclear factor-κ B (NF-κB), tumour necrosis factor (TNF)-α and interleukin (IL)-1ß were detected in the spinal cords of the Hypo-VSC EVs-injected rats, and these effects were impaired by an injection of Hypo-VSC EVs combined with antagomir-126. Collectively, the miR-126-3p-enriched Hypo-VSC EVs attenuated IR-induced pain hypersensitivity by restoring miR-126-3p expression in the injured spinal cord and subsequently modulating PIK3R2-mediated PI3K/Akt and NF-κB signalling pathways.

18.
Chem Commun (Camb) ; 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33030170

RESUMO

We conceptually demonstrate single-cell infrared phenomics as a novel strategy of phenotypic screening with infrared microspectroscopy. Based on this development, the cancer cell HepG2 glycocalyx was first identified as a potential target of protopanaxadiol, an herbal medicine. These findings provide a powerful tool to accurately evaluate the cell stress response and to largely expand the phenotypic screening toolkit for drug discovery.

19.
Acad Radiol ; 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-33046370

RESUMO

OBJECTIVE: This study was to investigate the CT quantification of COVID-19 pneumonia and its impacts on the assessment of disease severity and the prediction of clinical outcomes in the management of COVID-19 patients. MATERIALS METHODS: Ninety-nine COVID-19 patients who were confirmed by positive nucleic acid test (NAT) of RT-PCR and hospitalized from January 19, 2020 to February 19, 2020 were collected for this retrospective study. All patients underwent arterial blood gas test, routine blood test, chest CT examination, and physical examination on admission. In addition, follow-up clinical data including the disease severity, clinical treatment, and clinical outcomes were collected for each patient. Lung volume, lesion volume, nonlesion lung volume (NLLV) (lung volume - lesion volume), and fraction of nonlesion lung volume (%NLLV) (nonlesion lung volume / lung volume) were quantified in CT images by using two U-Net models trained for segmentation of lung and COVID-19 lesions in CT images. Furthermore, we calculated 20 histogram textures for lesions volume and NLLV, respectively. To investigate the validity of CT quantification in the management of COVID-19, we built random forest (RF) models for the purpose of classification and regression to assess the disease severity (Moderate, Severe, and Critical) and to predict the need and length of ICU stay, the duration of oxygen inhalation, hospitalization, sputum NAT-positive, and patient prognosis. The performance of RF classifiers was evaluated using the area under the receiver operating characteristic curves (AUC) and that of RF regressors using the root-mean-square error. RESULTS: Patients were classified into three groups of disease severity: moderate (n = 25), severe (n = 47) and critical (n = 27), according to the clinical staging. Of which, a total of 32 patients, 1 (1/25) moderate, 6 (6/47) severe, and 25 critical (25/27), respectively, were admitted to ICU. The median values of ICU stay were 0, 0, and 12 days, the duration of oxygen inhalation 10, 15, and 28 days, the hospitalization 12, 16, and 28 days, and the sputum NAT-positive 8, 9, and 13 days, in three severity groups, respectively. The clinical outcomes were complete recovery (n = 3), partial recovery with residual pulmonary damage (n = 80), prolonged recovery (n = 15), and death (n = 1). The %NLLV in three severity groups were 92.18 ± 9.89%, 82.94 ± 16.49%, and 66.19 ± 24.15% with p value <0.05 among each two groups. The AUCs of RF classifiers using hybrid models were 0.927 and 0.929 in classification of moderate vs (severe + critical), and severe vs critical, respectively, which were significantly higher than either radiomics models or clinical models (p < 0.05). The root-mean-square errors of RF regressors were 0.88 weeks for prediction of duration of hospitalization (mean: 2.60 ± 1.01 weeks), 0.92 weeks for duration of oxygen inhalation (mean: 2.44 ± 1.08 weeks), 0.90 weeks for duration of sputum NAT-positive (mean: 1.59 ± 0.98 weeks), and 0.69 weeks for stay of ICU (mean: 1.32 ± 0.67 weeks), respectively. The AUCs for prediction of ICU treatment and prognosis (partial recovery vs prolonged recovery) were 0.945 and 0.960, respectively. CONCLUSION: CT quantification and machine-learning models show great potentials for assisting decision-making in the management of COVID-19 patients by assessing disease severity and predicting clinical outcomes.

20.
Environ Microbiol ; 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33047445

RESUMO

Viruses play a key role in biogeochemical cycling and host mortality, metabolism, physiology and evolution in the ocean. Viruses that infect the globally abundant SAR11 bacteria (pelagiphages) were reported to be an important component of the marine viral communities. Our current knowledge of pelagiphages is based on a few studies and therefore is limited. In this study, 10 new pelagiphages were isolated and genomically characterized. These pelagiphages represent the first cultivated representatives of four viral lineages only found in metagenomic sequencing datasets previously. Many abundant environmental viral sequences, i.e., single-virus vSAG 37-F6 and several Global Ocean Viromes (GOV) viral populations, are now further confirmed with these pelagiphages. Viromic read mapping reveals that these new pelagiphages are globally distributed in the ocean and can be detected throughout the water column. Remarkably, isolation of these pelagiphages contributed up to 12% of all viromic reads annotated in the analysed viromes. Altogether, this study has greatly broadened our understanding of pelagiphages regarding their morphology, genetic diversity, infection strategies, and distribution pattern. The availability of these newly isolated pelagiphages and their genome sequences will allow us to further explore their infectivities and ecological strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA