Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 489
Filtrar
1.
Anal Chem ; 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33821629

RESUMO

MicroRNA (miRNA) has emerged as one of the ideal target biomarker analytes for cancer detection because its abnormal expression is closely related to the occurrence of many cancers. In this work, we combined three-dimensional (3D) popcorn-like gold nanofilms as novel surface-enhanced Raman scattering (SERS)-electrochemistry active substrates with toehold-mediated strand displacement reactions (TSDRs) to construct a DNA molecular machine for SERS-electrochemistry dual-mode detection of miRNA. 3D popcorn-like spatial structures generated more active "hot spots" and thus enhanced the sensitivity of SERS and electrochemical signals. Besides, the TSDRs showed high sequence-dependence and high specificity. The addition of target miRNA will trigger the molecular machine to perform two TSDRs in the presence of signal DNA strands modified by R6G (R6G-DNA), thus achieving an enzyme-free amplification detection of miRNA with a low limit of detection of 0.12 fM (for the SERS method) and 2.2 fM (for the electrochemical method). This biosensor can also serve as a universally amplified and sensitive detection platform for monitoring different biomarkers, such as cancer-related DNA, messenger RNA, or miRNA molecules, with high selectivity by changing the corresponding probe sequence.

2.
Chem Commun (Camb) ; 57(28): 3492-3495, 2021 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-33690755

RESUMO

Based on the nonlinear plasmonic scattering response to the modulated excitation in time, we realized a single-wavelength super-resolution imaging method on a custom-built system which is named as a scattering saturation STED (ssSTED) microscope. A spatial resolution of λ/7 (65 nm) was obtained on 50 nm gold nanoparticles.

3.
Anal Chem ; 93(12): 5001-5004, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33728901

RESUMO

Herein we present a proof-of-concept study of target-dependent gating of nanopores for general photoelectrochemical (PEC) bioanalysis in an H-cell. The model system was constructed upon a left chamber containing ascorbic acid (AA), the antibody modified porous anodic alumina (AAO) membrane separator, and a right chamber placed with the three-electrode system. The sandwich immunocomplexation and the associated enzymatic generation of biocatalytic precipitation (BCP) in the AAO nanopores would regulate the diffusion of AA from the left cell to the right cell, leading to a varied photocurrent response of the ZnInS nanoflakes photoelectrode. Exemplified by fatty-acid-banding protein (FABP) as the target, the as-developed protocol achieved good performance in terms of sensitivity, selectivity, reproducibility, as well as efficient reutilization of the working electrode. On the basis of an H-cell, this work features a new protocol of target-dependent gating-based PEC bioanalysis, which can serve as a general PEC analytical platform for various other targets of interest.

4.
Anal Chem ; 93(8): 4042-4050, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33586959

RESUMO

As one of the most promising biomarkers for numerous malignant tumors, accurate and reliable reporting of Cathepsin B (CTSB) activity is of great significance to achieve efficient diagnosis of cancers at an early stage and predicting metastasis. Here, we report a vigorous ratiometric fluorescent method integrating a cancer-targeting recognition moiety with a remarkably large emission wavelength shift into a single matrix to report CTSB activity sensitively and specifically. As a proof of concept, we synthesized amine-rich carbon quantum dots (CQDs) with a blue fluorescence, which offered an efficient scaffolding to covalently assemble the nucleolin-targeting recognition nucleic acid aptamer AS1411 and a CTSB-cleavable peptide substrate Gly-Arg-Arg-Gly-Lys-Gly-Gly-Cys-COOH that tethered with a near-infrared (NIR) fluorophore chlorin e6 (Ce6-GRRGKGGC, Ce6-Pep), enabling a cancer-targeting and CTSB stimulus-responsive ratiometric nanoprobe AS1411-Ce6-CQDs. Owing to the efficient fluorescence resonance energy transfer (FRET) process from the CQDs to Ce6 inside the assembly of nanoprobe, the blue fluorescence of CQDs at ∼450 nm was remarkably quenched, along with an obvious NIR fluorescence enhancement of Ce6 at ∼650 nm. After selective entry into cancer cells via nucleolin-mediated endocytosis, the overexpressed CTSB in lysosome could cleave Ce6-Pep and trigger the Ce6 moiety dissociation from AS1411-Ce6-CQDs, thus leading to the termination of FRET process, achieving the efficient ratiometric fluorescence response toward endogenous CTSB with a remarkably large emission wavelength shift of ∼200 nm from NIR to blue emission region. Notably, the nanoprobe AS1411-Ce6-CQDs exhibited an excellent specificity for ratiometric fluorescent sensing of CTSB activity with an ultralow detection limit of 0.096 ng/mL, demonstrating its promising use for early precise cancer diagnosis in the near future.

5.
Analyst ; 146(5): 1548-1551, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33427262

RESUMO

Drop-on-demand microkits with a diameter of ∼20 µm are used to measure the activity of acetylcholinesterase (AChE) in a brain slice with single-cell resolution. The relative standard deviation from 25 cellular regions reached 73.3% exhibiting the difference of enzyme activity in the brain slice. Therefore, this approach utilizing the well-established kits provides an alternative single-cell-resolved strategy for the elucidation of enzymatic heterogeneity at the tissue level.

6.
Chem Commun (Camb) ; 57(10): 1254-1257, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33427256

RESUMO

Three new ruthenium(ii) complexes containing an N-heterocyclic carbene (NHC) ligand (RuNHC) have been successfully synthesized and proved to be efficient near-infrared (NIR) ECL (electrogenerated chemiluminescence) luminophores. In addition to the advantages of the lower-charge main motif (+1), the much lower oxidation potentials, and the longer metal to ligand charge transfer (MLCT) absorption bands, most importantly, these RuNHC complexes show higher, or at least comparable, ECL efficiency compared with Ru(bpy)32+ under the same experimental conditions; this demonstrates their great potential for applications in the NIR ECL imaging field in the future.

7.
Artigo em Inglês | MEDLINE | ID: mdl-33512136

RESUMO

The development of novel electrocatalysts, especially Pt-free electrocatalysts, is of great significance for evolving hydrogen fuel cells. Two-dimensional materials have many advantages, such as large specific surface area, abundant active edges, and adjustable electronic structure, which provide broad prospects for studying high-performance electrocatalysts. In this paper, Cu2-xS@Au2S@Au nanoplates (NPs) were synthesized by cation exchange, which showed good catalytic performance toward the hydrogen evolution reaction (HER). Dark-field microscopy can help observe the process of cation exchange in real time to precisely control the synthesis of the composite materials. The synthesized Cu2-xS@Au2S@Au nanoplates (NPs) exhibited greatly enhanced plasmonic emission, resulting in accelerated chemical conversion and improved HER efficiency. Under 532 nm laser excitation, the overpotential of the HER shifted from 152 to 96 mV at a current density of -10 mA cm-2. The plasmonic nanocatalysts show exciting prospects in the field of new energy resources.

8.
Anal Chem ; 93(3): 1686-1692, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33378161

RESUMO

This work developed a sensitive electrochemiluminescence (ECL) biosensor based on a cyclometalated iridium(III) complex ((bt)2Irbza), which was synthesized for the first time. Annihilation, reductive-oxidative, and oxidative-reductive ECL behaviors of (bt)2Irbza were investigated, respectively. The oxidative-reductive ECL intensity was the strongest compared with the other two, which showed 16.7 times relative ECL efficiency compared with commercial [Ru(bpy)3]2+ under the same experimental conditions. Therefore, an ECL biosensing system with (bt)2Irbza as the anodic luminophore was established for miRNA detection based on a closed bipolar electrode (BPE). Combined with both steric hindrance and catalytic effects induced by hemin/G-quadruplex in the cathodic reservoir of BPE that changed the Faraday current of the cathode and thus mediated the ECL intensity of (bt)2Irbza in the anode of BPE, the ECL sensor stated an ultrahigh sensitivity for microRNA (miRNA-122) analysis with a detection limit of 82 aM.


Assuntos
Técnicas Biossensoriais , Complexos de Coordenação/química , Técnicas Eletroquímicas , Irídio/química , Medições Luminescentes , MicroRNAs/análise , Complexos de Coordenação/síntese química , Eletrodos , Humanos , Estrutura Molecular
9.
Anal Chem ; 93(3): 1529-1536, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33382590

RESUMO

Gold(I) compounds are known to bind sulfur-containing proteins, forming the basis in the design of gold(I)-based drugs. However, the intrinsic molecular mechanism of the chemical reaction is easily hidden when monitored in ensemble. We have previously demonstrated that Mycobacterium smegmatis porin A (MspA) can be engineered (MspA-M) to contain a specialized nanoreactor to probe chemical reactions involving tetrachloroaurate(III). Here, we provide further investigations of coordination interactions between dichloroaurate(I) and MspA-M. Gold compounds of different coordination geometry and valence states are as well probed and evaluated, demonstrating the generality of MspA-M. With single-molecule evidence, MspA-M demonstrates a preference for dichloroaurate(I) than tetrachloroaurate(III), an observation in a single molecule that has never been reported. By counting the maximum number of simultaneous ion bindings, the narrowly confined pore restriction also efficiently distinguishes dichloroaurate(I) and tetrachloroaurate(III) according to their differences in geometry or size. The above demonstration complemented a previous study by demonstrating other possible gold-based single-molecule chemical reactions observable by MspA. These observations bring insights in the understanding of gold-based coordination chemistry in a nanoscale.


Assuntos
Cloretos/química , Compostos de Ouro/química , Mycobacterium smegmatis/química , Nanoporos , Porinas/química , Engenharia de Proteínas , Sítios de Ligação , Ouro/química
10.
Anal Chem ; 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33301293

RESUMO

Engineered nanopipette tools have recently emerged as a powerful approach for electrochemical nanosensing, which has major implications in both fundamental biological research and biomedical applications. Herein, we describe a generic method of target-triggered assembly of aptamers in a nanopipette for nanosensing, which is exemplified by sensitive and rapid electrochemical single-cell analysis of adenosine triphosphate (ATP), a ubiquitous energy source in life and important signaling molecules in many physiological processes. Specifically, a layer of thiolated aptamers is immobilized onto a Au-coated interior wall of a nanopipette tip. With backfilled pairing aptamers, the engineered nanopipette is then used for probing intracellular ATP via the ATP-dependent linkage of the split aptamers. Due to the higher surface charge density from the aptamer assembly, the nanosensor would exhibit an enhanced rectification signal. Besides, this ATP-responsive nanopipette tool possesses excellent selectivity and stability as well as high recyclability. This work provides a practical single-cell nanosensor capable of intracellular ATP analysis. More generally, integrated with other split recognition elements, the proposed mechanism could serve as a viable basis for addressing many other important biological species.

11.
Artigo em Inglês | MEDLINE | ID: mdl-33340231

RESUMO

New tools for single-cell interrogation enable deeper understanding of cellular heterogeneity and associated cellular behaviors and functions. Information of RNA expression in single cell could contribute to our knowledge of the genetic regulatory circuits and molecular mechanism of disease development. Although significant progresses have been made for intracellular RNA analysis, existing methods have a trade-off between operational complexity and practical feasibility. We address this challenge by combining the ionic current rectification property of nanopipette reactor with duplex-specific nuclease-assisted hybridization chain reaction for signal amplification to realize a simple and practical intracellular nanosensor with minimal invasiveness, which enables single-cell collection and electrochemical detection of intracellular RNA with cell-context preservation. Systematic studies on differentiation of oncogenic miR-10b expression levels in non-malignant breast cells, metastatic breast cancer cells as well as non-metastatic breast cancer cells were then realized by this nanotool accompanied by assessment of different drugs effects. This work has unveiled the ability of electrochemistry to probe intracellular RNA and opened new opportunities to study the gene expression and heterogeneous complexity under physiological conditions down to single-cell level.

12.
Anal Chem ; 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33253543

RESUMO

Collective cell migration plays a key role in tissue repair, metastasis, and development. Cellular tension is a vital mechanical regulator during the force-driven cell movements. However, the contribution and mechanism of cell-cell force interaction and energetic costs during cell migration are yet to be understood. Here, we attempted to unfold the mechanism of collective cell movement through quantification of the intercellular tension and energetic costs. The measurement of pN intercellular force is based on a "spring-like" DNA-probe and a molecular tension fluorescence microscopy. During the process of wound healing, the intercellular force along with the cell monolayer mainly originates from actin polymerization, which is strongly related to the cellular energy metabolism level. Intracellular force at different spatial regions of wound and the energetic costs of leader and follower cells were measured. The maximum force and energy consumption are mainly concentrated at the wound edge and dynamically changed along with different stages of wound healing. These results indicated the domination of leader cells other than follower cells during the collective cell migration.

13.
Anal Chem ; 92(23): 15647-15654, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33170659

RESUMO

To date, plasmon resonance energy transfer (PRET)-based analytical approaches still inevitably suffer from limitations, such as lack of appropriate acceptor-donor pairs and the extra requirements of active groups of acceptors, which place great obstacles in extending the application of such methods, especially in the area of living cell studies. Herein, we design and fabricate a kind of "loading-type" plasmonic nanomaterials constituting gold nanoparticles as donors of PRET coated with mesoporous silicon, in which organic small molecules (CHCN) as acceptors of PRET were loaded (Au@MSN-CHCN). This "loading-type" strategy could conveniently integrate acceptor-donor pairs into one nanoparticle, so as to achieve the goal of sensitive detection of biomolecules in a complex physiological microenvironment. Based on the change of PRET efficiency of Au@MSN-CHCN induced by the specific reaction between CHCN and peroxynitrite (ONOO-), ONOO-, which plays an irreplaceable role in a series of physiological and pathological processes, is sensitively and selectively detected. Furthermore, in situ imaging of exogenous and endogenous ONOO- in living cells was achieved even at a single nanoparticle level. This work provides a general approach to construct PRET probes for visualizing various biomolecules in living cells.

14.
Analyst ; 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33210677

RESUMO

Potassium-selective polymer dots (K-Pdots) containing potassium ionophores were for the first time used for photoelectrochemical (PEC) analysis and yielded sensitive and specific detection of potassium ions. The successful PEC analysis using ion-selective Pdots underscored the effectiveness of the strategy deployed and suggested the potential universality of this strategy for the detection of metal ions, which should advance the development of PEC sensors in ion analysis.

15.
Artigo em Inglês | MEDLINE | ID: mdl-33211963

RESUMO

An approach to the design of iridium(III)-contained polytetraphenylethene Pdots that could exhibit highly efficient electrochemiluminescence (ECL) was proposed. The relationships of ECL performance between the iridium complex-embedded and end-capped aggregation-induced emission (AIE) active Pdots in aqueous media were investigated for the first time. The iridium complexes with cyclometalated ligand 6-phenylphenanthridine (pphent) were incorporated into the copolymers by either embedding (P0, P2-P5) or end-capping (P1) into the backbone via an ancillary 2,2'-bipyridine (bpy) ligand. Subsequently, the corresponding Pdots of P0-P5 encapsulated with poly(styrene-co-maleicanhydride) could be obtained by the nanoprecipitation method. Compared to Pdots0, Pdots2-Pdots5 with (pphent)2Ir(bpy) (M1) complex embedding, as the iridium complex content increases, ECL signals were decreased in the order of Pdots0 > Pdots2 > Pdots3 > Pdots4 > Pdots5; whereas among these Pdots of P0-P5, Pdots1 with M1 complex end-capping exhibited the highest ECL efficiency (relative to a Ru(bpy)32+ system of 18.9%) and 4.7-fold enhancement of the ECL signal compared to the parent Pdots of P0, which was mainly attributed to the good film conductivity of the completely conjugated architectures, thus prompting the intramolecular electron transfer. This work opened new avenues for designing highly efficient ECL emitters.

16.
Research (Wash D C) ; 2020: 4087069, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33029587

RESUMO

Noninvasive in vivo imaging of hepatic glutathione (GSH) levels is essential to early diagnosis and prognosis of acute hepatitis. Although GSH-responsive fluorescence imaging probes have been reported for evaluation of hepatitis conditions, the low penetration depth of light in liver tissue has impeded reliable GSH visualization in the human liver. We present a liver-targeted and GSH-responsive trimodal probe (GdNPs-Gal) for rapid evaluation of lipopolysaccharide- (LPS-) induced acute liver inflammation via noninvasive, real-time in vivo imaging of hepatic GSH depletion. GdNPs-Gal are formed by molecular coassembly of a GSH-responsive Gd(III)-based MRI probe (1-Gd) and a liver-targeted probe (1-Gal) at a mole ratio of 5/1 (1-Gd/1-Gal), which shows high r 1 relaxivity with low fluorescence and fluorine magnetic resonance spectroscopic (19F-MRS) signals. Upon interaction with GSH, 1-Gd and 1-Gal are cleaved and GdNPs-Gal rapidly disassemble into small molecules 2-Gd, 2-Gal, and 3, producing a substantial decline in r 1 relaxivity with compensatory enhancements in fluorescence and 19F-MRS. By combining in vivo magnetic resonance imaging (1H-MRI) with ex vivo fluorescence imaging and 19F-MRS analysis, GdNPs-Gal efficiently detect hepatic GSH using three independent modalities. We noninvasively visualized LPS-induced liver inflammation and longitudinally monitored its remediation in mice after treatment with an anti-inflammatory drug, dexamethasone (DEX). Findings highlight the potential of GdNPs-Gal for in vivo imaging of liver inflammation by integrating molecular coassembly with GSH-driven disassembly, which can be applied to other responsive molecular probes for improved in vivo imaging.

17.
Anal Chem ; 92(20): 14006-14011, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32957774

RESUMO

Single particle plasmon scattering can provide real-time imaging information on the synthesis of nanomaterials. Here, an electrochemical deposition strategy is reported to synthesize plasmonic Au@Metal core-shell nanoparticles (Au@M NPs), which exhibit localized surface plasmon resonance (LSPR) properties. Because of the excellent catalytic activity of the methanol oxidation reaction (MOR), Pt, Pd, and Rh were reduced on the surface of Au NPs to form monometallic and bimetallic shells. Under dark field microscopy (DFM), the scattering changes could be utilized to track the surface nucleation and bulk deposition process. The synthesized Au@M NPs, which combined the plasmonic and electrocatalytic features, showed greatly enhanced activity for MOR. Under LSPR excitation, the electroxidation process toward MOR was accelerated and increased approximately linearly with increased illumination intensity, which could be mostly attributed to the generation of energetic charge carriers. This strategy of real-time plasmonic tracking electrochemical deposition at the single particle level is facile and universal, which could be extended to the precise synthesis of other plasmonic core-shell nanomaterials and the investigation of the pathway of plasmon accelerated chemical conversion.

19.
J Am Chem Soc ; 142(33): 14307-14313, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32787250

RESUMO

While single nanoparticle electrochemistry holds great promise for establishing the structure-activity relationship (SAR) of electroactive nanomaterials, as it removes the heterogeneity among individuals, successful SAR studies remain rare. When one nanoparticle is seen to exhibit better performance than the others, it is often simply attributed to better activity of the particular individual. By taking the ion insertion reaction of Prussian blue nanoparticles as an example, here we show that the electrical contact between nanoparticles and electrode, a previously overlooked factor, was greatly distinct from one nanoparticle to another and significantly contributed to the apparent heterogeneity in the reactivity and cyclability. An individual nanoparticle with intrinsically perfect structure (size, facet, crystallinity, and so on) could be completely inactive, simply due to poor electrical contacts, which blurred the SAR and likely caused failures. We further proposed a sputter-coating method to enhance the electrical contacts by depositing an ultrathin platinum layer onto the sample. Such an approach was routinely adopted in scanning electron microscopy to improve the electron mobility between nanoparticles and substrate. Elimination of heterogeneous contacts ensured that the electrochemical activity of single nanoparticles can be accessed and further correlated with their structural features, thus paving the way for single nanoparticle electrochemistry to deliver on its promises in SAR.

20.
J Am Chem Soc ; 142(37): 15852-15859, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32842733

RESUMO

The magnetic hysteresis property during the spin transition of spin-crossover (SCO) materials holds great promise for their applications in spin electronics, information storage, thermochromic, and nanophotonic devices. Existing studies often measured the averaged property of a bulk sample consisting of lots of individuals. When considering the significant heterogeneity among different individuals and the inevitable interparticle interactions, ensemble measurement not only blurred the structure-property relationship but also compromised the intrinsic hysteresis property and cyclability. Herein, we employed a recently developed surface plasmon resonance microscopy (SPRM) method to measure the thermal hysteresis curve of single isolated SCO nanoparticles. The thermal-induced spin transition was found to alter the optical contrast of single SCO nanoparticles, which was optically readout using SPRM in a quantitative, nonintrusive, and high-throughput manner. Single nanoparticle measurements revealed an intrinsic transition temperature that was independent of the temperature scan rate and superior stability after over 11 000 cycles of single SCO nanoparticles. Correlations between the hysteresis and the size and morphology of the same individuals further uncovered the significant nanoparticle-to-nanoparticle heterogeneity with implications for the size-property relationship and rational design of SCO materials with improved performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...