Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 608
Filtrar
2.
Infect Immun ; : IAI0031521, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34543119

RESUMO

Mycobacterium tuberculosis is a chronic infectious disease pathogen. To date, tuberculosis is a major infectious disease that endangers human health. To better prevent and treat tuberculosis, it is important to study the pathogenesis of M. tb. Based on early-stage laboratory research results, in this study, we verified the upregulation of sod2 in Bacillus Calmette-Guérin (BCG) and H37Rv infection. By detecting BCG/H37Rv intracellular survival in sod2-silenced and sod2- overexpressing macrophages, sod2 was found to promote the intracellular survival of BCG/H37Rv. Then, miR-495 was determined to be downregulated by BCG/H37Rv. BCG/H37Rv can upregulate sod2 expression by miR-495 to promote the intracellular survival of BCG/H37Rv through a decline in ROS levels. This study provides a theoretical basis for developing new drug targets and treating tuberculosis.

3.
Virulence ; 12(1): 2296-2313, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34482810

RESUMO

Airway epithelial cells are the first line of defense against respiratory pathogens. Porcine bacterial pathogens, such as Bordetella bronchiseptica, Actinobacillus pleuropneumoniae, Glaesserella (Haemophilus) parasuis, and Pasteurella multocida, breach this barrier to lead to local or systematic infections. Here, we demonstrated that respiratory bacterial pathogen infection disrupted the airway epithelial intercellular junction protein, E-cadherin, thus contributing to impaired epithelial cell integrity. E-cadherin knocking-out in newborn pig tracheal cells via CRISPR/Cas9 editing technology confirmed that E-cadherin was sufficient to suppress the paracellular transmigration of these porcine respiratory bacterial pathogens, including G. parasuis, A. pleuropneumoniae, P. multocida, and B. bronchiseptica. The E-cadherin ectodomain cleavage by these pathogens was probably attributed to bacterial HtrA/DegQ protease, but not host HtrA1, MMP7 and ADAM10, and the prominent proteolytic activity was further confirmed by a serine-to-alanine substitution mutation in the active center of HtrA/DegQ protein. Moreover, deletion of the htrA gene in G. parasuis led to severe defects in E-cadherin ectodomain cleavage, cell adherence and paracellular transmigration in vitro, as well as bacterial breaking through the tracheal epithelial cells, systemic invasion and dissemination in vivo. This common pathogenic mechanism shared by other porcine respiratory bacterial pathogens explains how these bacterial pathogens destroy the airway epithelial cell barriers and proliferate in respiratory mucosal surface or other systemic tissues.

4.
Front Vet Sci ; 8: 682514, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490391

RESUMO

Pasteurella multocida generally colonizes mammalian/bird respiratory tracts and mainly causes respiratory disorders in both humans and animals. To date, the effects of P. multocida infection on the respiratory epithelial barriers and molecules in host respiratory epithelial cells in their response to P. multocida infection are still not well-known. In this study, we used newborn pig tracheal epithelial (NPTr) cells as an in vitro model to investigate the effect of P. multocida infection on host respiratory epithelial barriers. By detecting the transepithelial electrical resistance (TEER) values of NPTr cells and the expression of several known molecules associated with cell adherens and junctions, we found that P. multocida infection disrupted the barrier functions of NPTr cells. By performing RNA sequencing (RNA-Seq), we determined 30 differentially expressed genes (DEGs), including the vascular endothelial growth factor A (VEGFA) encoding gene VEGFA, which participated in biological processes (GO:0034330, GO:0045216, and GO:0098609) closely related to epithelial adhesion and barrier functions. These 30 DEGs participated in 22 significant signaling pathways with a p-value < 0.05, including the transforming growth factor (TGF)-beta signaling pathway (KEGG ID: ssc04350), hypoxia-inducible factor 1 (HIF-1) signaling pathway (KEGG ID: ssc04066), epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor resistance (KEGG ID: ssc01521), tumor necrosis factor (TNF) signaling pathway (KEGG ID: ssc04668), and mitogen-activated protein kinase (MAPK) signaling pathway (KEGG ID: ssc04010), which are reported to have roles in contributing to the production of inflammatory factors as well as the regulation of epithelial adhesion and barrier function in other tissues and organisms. The results presented in this study may help improve our understanding of the pathogenesis of P. multocida.

5.
J Virol ; : JVI0141421, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34495701

RESUMO

Rabies, caused by rabies virus (RABV), remains a serious threat to public health in most countries worldwide. At present, the administration of rabies vaccines has been the most effective strategy to control rabies. Herein, we evaluate the effect of colloidal manganese salt (Mn jelly, MnJ) as an adjuvant of rabies vaccine in mice, cats, and dogs. The results showed that MnJ promoted type I interferon (IFN-I) and cytokine production in vitro and the maturation of dendritic cells (DCs) in vitro and in vivo. Besides, MnJ serving as an adjuvant for rabies vaccines could significantly facilitate the generation of T follicular helper (Tfh) cells, germinal center (GC) B cells, plasma cells (PCs), and RABV-specific antibody-secreting-cells (ASCs), consequently improved the immunogenicity of rabies vaccines and provide better protection against virulent RABV challenge. Similarly, MnJ enhanced the humoral immune response in cats and dogs as well. Collectively, our results suggest that MnJ can facilitate the maturation of DCs during rabies vaccination, which can be a promising adjuvant candidate for rabies vaccines. IMPORTANCE Extending humoral immune response by using adjuvants is an important strategy for vaccine development. In this study, a novel adjuvant MnJ supplemented in rabies vaccines was evaluated in mice, cats, and dogs. Our results in the mouse model revealed that MnJ increased the numbers of mature DCs, Tfh cells, GC B cells, PCs, and RABV-specific ASCs, resulting in enhanced immunogenicity and protection rate of rabies vaccines. We further found MnJ had the same stimulative effect in cats and dogs. Our study provides the first evidence that MnJ serving as a novel adjuvant of rabies vaccines can boost immune response both in a mouse and pet model.

6.
J Gen Virol ; 102(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34424158

RESUMO

Bovine astrovirus (BoAstV) belongs to genus Mamastravirus (MAstV). It can be detected in the faeces of both diarrhoeal and healthy calves. However, its prevalence, genetic diversity, and association with cattle diarrhoea are poorly understood. In this study, faecal samples of 87 diarrhoeal and 77 asymptomatic calves from 20 farms in 12 provinces were collected, and BoAstV was detected with reverse transcription-polymerase chain reaction (RT-PCR). The overall prevalence rate of this virus in diarrhoeal and asymptomatic calves was 55.17 % (95 % CI: 44.13, 65.85 %) and 36.36 % (95 % CI: 25.70, 48.12 %), respectively, indicating a correlation between BoAstV infection and calf diarrhoea (OR=2.15, P=0.024). BoAstV existed mainly in the form of co-infection (85.53 %) with one to five of nine viruses, and there was a strong positive correlation between BoAstV co-infection and calf diarrhoea (OR=2.83, P=0.004). Binary logistic regression analysis confirmed this correlation between BoAstV co-infection and calf diarrhoea (OR=2.41, P=0.038). The co-infection of BoAstV and bovine rotavirus (BRV) with or without other viruses accounted for 70.77 % of all the co-infection cases. The diarrhoea risk for the calves co-infected with BoAstV and BRV was 8.14-fold higher than that for the calves co-infected with BoAstV and other viruses (OR=8.14, P=0.001). Further, the co-infection of BoAstV/BRV/bovine kobuvirus (BKoV) might increase the risk of calf diarrhoea by 14.82-fold, compared with that of BoAstV and other viruses (OR=14.82, P <0.001). Then, nearly complete genomic sequences of nine BoAstV strains were assembled by using next-generation sequencing (NGS) method. Sequence alignment against known astrovirus (AstV) strains at the levels of both amino acids and nucleotides showed a high genetic diversity. Four genotypes were identified, including two known genotypes MAstV-28 (n=3) and MAstV-33 (n=2) and two novel genotypes designated tentatively as MAstV-34 (n=1) and MAstV-35 (n=3). In addition, seven out of nine BoAstV strains showed possible inter-genotype recombination and cross-species recombination. Therefore, our results increase the knowledge about the prevalence and the genetic evolution of BoAstV and provide evidence for the association between BoAstV infection and calf diarrhoea.


Assuntos
Infecções por Astroviridae , Doenças dos Bovinos , Coinfecção , Diarreia , Animais , Animais Recém-Nascidos/virologia , Infecções por Astroviridae/epidemiologia , Infecções por Astroviridae/veterinária , Infecções por Astroviridae/virologia , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/virologia , China/epidemiologia , Coinfecção/epidemiologia , Coinfecção/veterinária , Coinfecção/virologia , Diarreia/epidemiologia , Diarreia/veterinária , Diarreia/virologia , Fezes/virologia , Prevalência
7.
Mol Brain ; 14(1): 116, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34281571

RESUMO

Bacterial meningitis is a life-threatening infectious disease with severe neurological sequelae and a high mortality rate, in which Escherichia coli is one of the primary Gram-negative etiological bacteria. Meningitic E. coli infection is often accompanied by an elevated blood-brain barrier (BBB) permeability. BBB is the structural and functional barrier composed of brain microvascular endothelial cells (BMECs), astrocytes, and pericytes, and we have previously shown that astrocytes-derived TGFß1 physiologically maintained the BBB permeability by triggering a non-canonical hedgehog signaling in brain microvascular endothelial cells (BMECs). Here, we subsequently demonstrated that meningitic E. coli infection could subvert this intercellular communication within BBB by attenuating TGFBRII/Gli2-mediated such signaling. By high-throughput screening, we identified E. coli α-hemolysin as the critical determinant responsible for this attenuation through Sp1-dependent TGFBRII reduction and triggering Ca2+ influx and protein kinase A activation, thus leading to Gli2 suppression. Additionally, the exogenous hedgehog agonist SAG exhibited promising protection against the infection-caused BBB dysfunction. Our work revealed a hedgehog-targeted pathogenic mechanism during meningitic E. coli-caused BBB disruption and suggested that activating hedgehog signaling within BBB could be a potential protective strategy for future therapy of bacterial meningitis.

8.
Front Vet Sci ; 8: 666769, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222397

RESUMO

Mycoplasmas are successful pathogens both in humans as well as in animals. In cattle, Mycoplasma bovis (M. bovis) is known to be responsible for serious health complications, including pneumonia, mastitis, and arthritis. However, M. bovis pathogenesis remains unclear. Secreted proteins of M. bovis could influence infection and modify host defense signaling pathways after they enter their extracellular space in the host micro-environment. Therefore, this study was aimed to compare the secretomes of M. bovis HB0801 virulent (P1) and attenuated (P150) strains and identify potential pathogenesis-related secreted proteins and biomarkers. The cells of P1 and P150 strains were grown in pleuropneumonia-like organism medium to log phase and then transferred to phosphate-buffered saline for 2 h. Then, the supernatant was analyzed by using label-free quantitative proteomics, and 477 potential secreted proteins were identified. Combined with the bioinformatics prediction, we found that 178 proteins were commonly secreted by the P1 and P150 strains, and 49 of them were encoded by mycoplasmal core genes. Additionally, 79 proteins were found to have a different abundance between the P1 and P150 strains. Among these proteins, 34 were more abundant and uniquely expressed in P1, indicating a possible association with the virulence of M. bovis. Three differentially secreted proteins, MbovP0145, MbovP0725, and MbovP0174, as well as one equally secreted protein, MbovP0481, as positive control and one protein of inner membrane, MbovP0310, as negative control were, respectively, cloned, expressed, and evaluated for antigenicity, subcellular location, and the secretion nature with their mouse antisera by western blotting and colony immunoblotting assay. Among them, MbovP0145 was confirmed to be more secreted by P1 than P150 strain, highly reactive with the antisera from naturally infected and P1 experimentally infected cattle but not with the P150 vaccinated calves, indicating its potential as a diagnostic antigen. In conclusion, these findings may represent the most extensive compilation of potentially secreted proteins in mycoplasma species and the largest number of differentially secreted proteins between the virulent and attenuated M. bovis strains to date and provide new insights into M. bovis pathogenesis and diagnosis.

9.
RNA Biol ; : 1-9, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34241576

RESUMO

The blood-brain barrier (BBB), which controls permeability into and out of the nervous system, is a tightly connected, structural, and functional separation between the central nervous system (CNS) and circulating blood. CNS diseases, such as Alzheimer's disease, multiple sclerosis, traumatic brain injury, stroke, meningitis, and brain cancers, often develop with the increased BBB permeability and further leads to irreversible CNS injury. Non-coding RNAs (ncRNAs) are functional RNA molecules that generally lack the coding abilities but can actively regulate the mRNA expression and function through different mechanisms. Various types of ncRNAs, including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), are highly expressed in brain microvascular endothelial cells and are potential mediators of BBB permeability. Here, we summarized the recent research progress on miRNA, lncRNA, and circRNA roles regulating the BBB permeability in different CNS diseases. Understanding how these ncRNAs affect the BBB permeability shall provide important therapeutic insights into the prevention and control of the BBB dysfunction.

10.
Front Vet Sci ; 8: 696262, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34235206

RESUMO

Mycoplasma hyopneumoniae causes swine respiratory disease worldwide. Due to the difficulty of isolating and cultivating M. hyopneumoniae, very few attenuated strains have been successfully isolated, which hampers the development of attenuated vaccines. In order to produce an attenuated M. hyopneumoniae strain, we used the highly virulent M. hyopneumoniae strain ES-2, which was serially passaged in vitro 200 times to produce the attenuated strain ES-2L, and its virulence was evidenced to be low in an animal experiment. In order to elucidate the mechanisms underlying virulence attenuation, we performed whole-genome sequencing of both strains and conducted comparative genomic analyses of strain ES-2 and its attenuated form ES-2L. Strain ES-2L showed three large fragment deletion regions including a total of 18 deleted genes, compared with strain ES-2. Analysis of single-nucleotide polymorphisms (SNPs) and indels indicated that 22 dels were located in 19 predicted coding sequences. In addition to these indels, 348 single-nucleotide variations (SNVs) were identified between strains ES-2L and ES-2. These SNVs mapped to 99 genes where they appeared to induce amino acid substitutions and translation stops. The deleted genes and SNVs may be associated with decreased virulence of strain ES-2L. Our work provides a foundation for further examining virulence factors of M. hyopneumoniae and for the development of attenuated vaccines.

11.
Future Microbiol ; 16: 721-729, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34223787

RESUMO

Aim: This study aims to develop a subunit vaccine with high cross-protection for Streptococcus suis. Materials & methods: Four-week-old female BALB/c mice were first immunized with a single and mixed protein. Various indicators, such as antibody titers and various cytokine levels, were further analyzed. Results: The results showed that purified recombinant proteins IF-2 and 1022 had a good protective effect against lethal doses of S. suis serotype 2 and S. suis serotype 9. This study showed immunization with recombinant proteins. Conclusion: IF-2 and 1022 can enhance cross-protection against S. suis serotypes 2 and 9.

12.
Int J Mol Sci ; 22(12)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198485

RESUMO

Brain microvascular endothelial cells (BMECs) constitute the structural and functional basis for the blood-brain barrier (BBB) and play essential roles in bacterial meningitis. Although the BBB integrity regulation has been under extensive investigation, there is little knowledge regarding the roles of long non-coding RNAs (lncRNAs) in this event. The present study aimed to investigate the roles of one potential lncRNA, lncRSPH9-4, in meningitic E. coli infection of BMECs. LncRSPH9-4 was cytoplasm located and significantly up-regulated in meningitic E. coli-infected hBMECs. Electrical cell-substrate impedance sensing (ECIS) measurement and Western blot assay demonstrated lncRSPH9-4 overexpression in hBMECs mediated the BBB integrity disruption. By RNA-sequencing analysis, 639 mRNAs and 299 miRNAs were significantly differentiated in response to lncRSPH9-4 overexpression. We further found lncRSPH9-4 regulated the permeability in hBMECs by competitively sponging miR-17-5p, thereby increasing MMP3 expression, which targeted the intercellular tight junctions. Here we reported the infection-induced lncRSPH9-4 aggravated disruption of the tight junctions in hBMECs, probably through the miR-17-5p/MMP3 axis. This finding provides new insights into the function of lncRNAs in BBB integrity during meningitic E. coli infection and provides the novel nucleic acid targets for future treatment of bacterial meningitis.


Assuntos
Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Escherichia coli/fisiologia , Metaloproteinase 3 da Matriz/metabolismo , Meningites Bacterianas/genética , Meningites Bacterianas/microbiologia , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Sequência de Bases , Citoplasma/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/microbiologia , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , Microvasos/patologia , Modelos Biológicos , Permeabilidade , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Junções Íntimas/metabolismo , Transcrição Genética , Regulação para Cima/genética
13.
Int J Mol Sci ; 22(12)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198513

RESUMO

BACKGROUND: Pulmonary disease caused by Mycobacterium abscessus (M. abscessus) spreads around the world, and this disease is extremely difficult to treat due to intrinsic and acquired resistance of the pathogen to many approved antibiotics. M. abscessus is regarded as one of the most drug-resistant mycobacteria, with very limited therapeutic options. METHODS: Whole-cell growth inhibition assays was performed to screen and identify novel inhibitors. The IC50 of the target compounds were tested against THP-1 cells was determined to calculate the selectivity index, and then time-kill kinetics assay was performed against M. abscessus. Subsequently, the synergy of oritavancin with other antibiotics was evaluated by using checkerboard method. Finally, in vivo efficacy was determined in an immunosuppressive murine model simulating M. abscessus infection. RESULTS: We have identified oritavancin as a potential agent against M. abscessus. Oritavancin exhibited time-concentration dependent bactericidal activity against M. abscessus and it also displayed synergy with clarithromycin, tigecycline, cefoxitin, moxifloxacin, and meropenem in vitro. Additionally, oritavancin had bactericidal effect on intracellular M. abscessus. Oritavancin significantly reduced bacterial load in lung when it was used alone or in combination with cefoxitin and meropenem. CONCLUSIONS: Our in vitro and in vivo assay results indicated that oritavancin may be a viable treatment option against M. abscessus infection.


Assuntos
Antibacterianos/uso terapêutico , Lipoglicopeptídeos/uso terapêutico , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium abscessus/fisiologia , Animais , Antibacterianos/farmacologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Humanos , Imunossupressão , Espaço Intracelular/microbiologia , Lipoglicopeptídeos/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Mycobacterium abscessus/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Células THP-1
14.
Front Microbiol ; 12: 694103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305859

RESUMO

The Gram-positive bacterial species Streptococcus suis is an important porcine and human pathogen that causes severe life-threatening diseases associated with high mortality rates. However, the mechanisms by which S. suis evades host innate immunity remain elusive, so identifying novel virulence factors involved in immune evasion is crucial to gain control over this threatening pathogen. Our previous work has shown that S. suis protein endopeptidase O (SsPepO) is a novel fibronectin-binding protein. Here, we identified that recombinant SsPepO binds human plasminogen in a dose-dependent manner. Moreover, the binding of SsPepO and plasminogen, upon the activation of urokinase-type plasminogen activator, generated plasmin, which could cleave complement C3b, thus playing an important role in complement control. Additionally, a SspepO-deficient mutant showed impaired adherence to plasminogen as well as impaired adherence to and invasion of rat brain microvascular endothelial cells compared with the wildtype strain. We further found that the SspepO-deficient mutant was efficiently killed by human serum and blood. We also confirmed that the SspepO-deficient mutant had a lower mortality rate than the wildtype strain in a mouse model. In conclusion, these results indicate that SsPepO is a novel plasminogen-binding protein that contributes to S. suis immune evasion.

15.
Foodborne Pathog Dis ; 18(10): 733-743, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34143653

RESUMO

Escherichia coli is an important foodborne pathogen and also plays key roles in dissemination of antimicrobial resistance genes (ARGs). However, current data on the prevalence of antimicrobial-resistant E. coli at different nodes of the pork supplying chain are still limited. Herein, we investigated drug-resistant phenotypes and molecular characteristics of E. coli strains isolated from different pig farms, slaughterhouses, and terminal markets in the Henan Province of China. A total of 191 (70.74%), 140 (35.09%), and 77 (30.20%) E. coli strains were isolated from 270, 399, and 255 samples collected from pig farms, slaughterhouses, and retailing markets, respectively. Antimicrobial susceptibility testing revealed that these 408 strains showed severe antimicrobial resistance profiles. Approximately 93.19% (178/191), 66.43% (93/140), and 67.53% (52/77) of the isolates from farms, slaughterhouses, and terminal markets were resistant to three of the nine antibiotic classes tested, respectively. Multilocus sequence typing showed that sequence types (STs) 10 and ST101 were commonly identified among the isolates from farms, slaughterhouses, and terminal markets. Isolates belonging to these two STs carried multiple ARGs, conferring resistance to the antibiotics tested. Two important ARGs with great public health concerns (mcr-1 and blaNDM-1) were found from these two STs. Isolates belonging to these two STs also carried several virulence factor-encoding genes, including astA, tsh, and traT, which might contribute to the pathogenesis of these isolates. The wide prevalence and distribution of these two STs in different nodes of pork supplying chain might represent a big public health threat and should receive more attention.

16.
Int J Mol Sci ; 22(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072443

RESUMO

As an important zoonotic pathogen, Streptococcus suis (S. suis) infection has been reported to be a causative agent for variety of diseases in humans and animals, especially Streptococcal toxic shock-like syndrome (STSLS), which is commonly seen in cases of severe S. suis infection. STSLS is often accompanied by excessive production of inflammatory cytokines, which is the main cause of death. This calls for development of new strategies to avert the damage caused by STSLS. In this study, we found for the first time that Baicalein, combined with ampicillin, effectively improved severe S. suis infection. Further experiments demonstrated that baicalein significantly inhibited the hemolytic activity of SLY by directly binding to SLY and destroying its secondary structure. Cell-based assays revealed that Baicalein did not exert toxic effects and conferred protection in S. suis-infected cells. Interestingly, compared with ampicillin alone, Baicalein combined with ampicillin resulted in a higher survival rate in mice severely infected with S. suis. At the same time, we found that baicalein can be combined with meropenem against MRSA. In conclusion, these results indicate that baicalein has a good application prospect.


Assuntos
Antibacterianos/farmacologia , Flavanonas/farmacologia , Infecções Estreptocócicas/microbiologia , Streptococcus suis/efeitos dos fármacos , Animais , Antibacterianos/química , Citocinas/biossíntese , Modelos Animais de Doenças , Farmacorresistência Bacteriana/efeitos dos fármacos , Quimioterapia Combinada , Flavanonas/química , Hemólise/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Molecular , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/patologia , Relação Estrutura-Atividade
17.
J Immunol ; 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183365

RESUMO

Seneca Valley virus (SVV), a newly emerging virus belonging to the Picornaviridae family, has caused vesicular disease in the swine industry. However, the molecular mechanism of viral pathogenesis remains poorly understood. This study revealed that SVV infection could induce pyroptosis in SK6 cells in a caspase-dependent and -independent manner. SVV may inhibit caspase-1 activation at late infection because of 3Cpro cleavage of NLRP3, which counteracted pyroptosis activation. Further study showed that 3Cpro targeted porcine gasdermin D (pGSDMD) for cleavage through its protease activity. 3Cpro cleaved porcine GSDMD (pGSDMD) at two sites, glutamine 193 (Q193) and glutamine 277 (Q277), and Q277 was close to the caspase-1-induced pGSDMD cleavage site. pGSDMD1-277 triggered cell death, which was similar to N-terminal fragment produced by caspase-1 cleavage of pGSDMD, and other fragments exhibited no significant inhibitory effects on cellular activity. Ectopic expression of pGSDMD converted 3Cpro-induced apoptosis to pyroptosis in 293T cells. Interestingly, 3Cpro did not cleave mouse GSDMD or human GSDMD. And, both pGSDMD and pGSDMD1-277 exhibited bactericidal activities in vivo. Nevertheless, pGSDMD cannot kill bacteria in vitro. Taken together, our results reveal a novel pyroptosis activation manner produced by viral protease cleavage of pGSDMD, which may provide an important insight into the pathogenesis of SVV and cancer therapy.

18.
Vaccine ; 39(30): 4184-4189, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34127292

RESUMO

Infectious diseases can have a major impact on the profitability of the cattle industry. To determine the occurrence of bovine infectious diseases in China and the adoption of vaccination to control them, a national-wide questionnaire and focus group meeting were performed. The questionnaire was administered to 189 farmers including 93 dairy farmers, 80 beef cattle farmers and 16 yak farmers. Since it is compulsory to vaccinate cattle against foot and mouth disease, the coverage of vaccination to this disease was the highest (100% of dairy and yak farms and 92.5% of beef farms). However, the implementation of vaccination against other diseases was vastly different between cattle types with less than 50% of farms adopting vaccination (except brucellosis vaccine in yak farms). In a focus group meeting of 36 cattle experts on the key issues affecting the frequency of infectious diseases in cattle and the vaccination practices adopted on Chinese cattle farms, the lack of effective vaccines against single or multiple pathogens, a lack of tools for the early and correct diagnosis of disease, difficulties in licensing novel vaccines and diagnostic agents, low efficiency in disseminating knowledge on diseases and control products to producers were identified as key issues. In conclusion, except for FMD, the control of most infectious diseases of cattle in China requires improving. Development of improved control measures and diagnostic tests along with the development and implementation of educational material for producers on cattle diseases should be given priority.


Assuntos
Doenças dos Bovinos , Doenças Transmissíveis , Febre Aftosa , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/prevenção & controle , China/epidemiologia , Fazendas , Febre Aftosa/epidemiologia , Febre Aftosa/prevenção & controle , Vacinação/veterinária
19.
Virol Sin ; 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34061318

RESUMO

Cholesterol-25-hydroxylase (CH25H) is a membrane protein associated with endoplasmic reticulum, and it is an interferon-stimulated factor regulated by interferon. CH25H catalyzes cholesterol to produce 25-hydroxycholesterol (25HC) by adding a second hydroxyl to the 25th carbon atom of cholesterol. Recent studies have shown that both CH25H and 25HC could inhibit the replication of many viruses. In this study, we found that ectopic expression of CH25H in HEK-293T and BHK-21 cell lines could inhibit the replication of Seneca Valley virus (SVV) and that there was no species difference. On the other hand, the knockdown of CH25H could enhance the replication of SVV in HEK-293T and BHK-21 cells, indicating the importance of CH25H. To some extent, the CH25H mutant without hydroxylase activity also lost its ability to inhibit SVV amplification. Further studies demonstrated that 25HC was involved in the entire life cycle of SVV, especially in repressing its adsorption process. This study reveals that CH25H exerts the advantage of innate immunity mainly by producing 25HC to block virion adsorption.

20.
Vet Microbiol ; 258: 109122, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34052743

RESUMO

Actinobacillus pleuropneumoniae is a Gram-negative bacterium causing porcine pleuropneumonia and severe economic losses in the global swine industry. The toxic trace element copper is required for many physiological and pathological processes in organisms. However, CopA, one of the most well-characterized P-type ATPases contributing to copper resistance, has not been characterized in A. pleuropneumoniae. We used quantitative PCR analysis to examine expression of the copA gene in A. pleuropneumoniae and investigated sequence conservation among serotypes and other Gram-negative bacteria. Growth characteristics were determined using growth curve analyses and spot dilution assays of the wild-type strain and a △copA mutant. We also used flame atomic absorption spectrophotometry to determine intracellular copper content and examined the virulence of the △copA mutant in a mouse model. The copA expression was induced by copper, and its nucleotide sequence was highly conserved among different serotypes of A. pleuropneumoniae. The amino acid sequence of CopA shared high identity with CopA sequences reported from several Gram-negative bacteria. Furthermore, the △copA mutant exhibited impaired growth and had higher intracellular copper content compared with the wild-type strain when supplemented with copper. The mouse model revealed that CopA had no influence on the virulence of A. pleuropneumoniae. In conclusion, these results demonstrated that CopA is required for resistance of A. pleuropneumoniae to copper and protects A. pleuropneumoniae against copper toxicity via copper efflux.


Assuntos
Infecções por Actinobacillus/microbiologia , Actinobacillus pleuropneumoniae/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Cobre/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Actinobacillus pleuropneumoniae/genética , Actinobacillus pleuropneumoniae/metabolismo , Actinobacillus pleuropneumoniae/patogenicidade , Animais , Proteínas de Bactérias/genética , Biologia Computacional , Camundongos , Camundongos Endogâmicos BALB C , Regulação para Cima/efeitos dos fármacos , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...